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ABSTRACT

The main asteroid belt spans ∼ 2–4 AU in heliocentric distance and is sparsely

populated by rocky debris. The dynamical structure of the main belt records clues

to past events in solar system history. Evidence from the structure of the Kuiper

belt, an icy debris belt beyond Neptune, suggests that the giant planets were born

in a more compact configuration and later experienced planetesimal-driven planet

migration. Giant planet migration caused both mean motion and secular resonances

to sweep across the main asteroid belt, raising the eccentricity of asteroids into

planet-crossing orbits and depleting the belt. I show that the present-day semimajor

axis and eccentricity distributions of large main belt asteroids are consistent with

excitation and depletion due to resonance sweeping during the epoch of giant planet

migration. I also use an analytical model of the sweeping of the ν6 secular resonance,

to set limits on the migration speed of Saturn.

After planet migration, dynamical chaos became the dominant loss mechanism

for asteroids with diameters D & 10 km in the current asteroid belt. I find that

the dynamical loss history of test particles from this region is well described with

a logarithmic decay law. My model suggests that the rate of impacts from large

asteroids may have declined by a factor of three over the last ∼ 3 Gy, and that the

present-day impact flux of D > 10 km objects on the terrestrial planets is roughly

an order of magnitude less than estimates used in crater chronologies and impact

hazard risk assessments.

Finally, I have quantified the change in the solar wind 6Li/7Li ratio due to

the estimated in-fall of chondritic material and enhanced dust production during

the epoch of planetesimal-driven giant planet migration. The solar photosphere is

currently highly depleted in lithium relative to chondrites, and 6Li is expected to

be far less abundant in the sun than 7Li due to the different nuclear reaction rates
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of the two isotopes. Evidence for a short-lived impact cataclysm that affected the

entire inner solar system may be found in the composition of implanted solar wind

particles in lunar regolith.
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CHAPTER 1

DYNAMICAL HISTORY OF THE MAIN ASTEROID BELT

1.1 Introduction

The main asteroid belt spans the ∼ 2–4 AU heliocentric distance zone that is sparsely

populated with rocky planetesimal debris. Strong mean motion resonances with

Jupiter in several locations in the main belt cause asteroids to follow chaotic orbits,

cross the orbits of the major planets, and be removed from the main belt (Wisdom,

1987). These regions are therefore emptied of asteroids over the age of the solar

system, forming the well-known Kirkwood gaps (Kirkwood, 1867). In addition to the

well known low-order mean motion resonances with Jupiter that form the Kirkwood

gaps, there are numerous weak resonances that cause long term orbital chaos and

transport asteroids out of the main belt (Morbidelli and Nesvorny, 1999). A very

powerful secular resonance that occurs where the pericenter precession rate of an

asteroid is nearly the same as that of one of the solar system’s eigenfrequencies, the

ν6 secular resonance, lies at the inner edge of the main belt (Williams and Faulkner,

1981).

The many resonances found throughout the main asteroid belt are largely respon-

sible for maintaining the Near Earth Asteroid (NEA) population. Non-gravitational

forces, such as the Yarkovsky effect, cause asteroids to drift in semimajor axis into

chaotic resonances whence they can be lost from the main belt (Öpik, 1951; Vokrouh-

lický and Farinella, 2000; Farinella et al., 1998; Bottke et al., 2000). The Yarkovsky

effect is size-dependent, and therefore smaller asteroids are more mobile and are

lost from the main belt more readily than larger ones. Asteroids with D . 10 km

have also undergone appreciable collisional evolution over the age of the solar sys-

tem (O’Brien and Greenberg, 2005; Cheng, 2004; Bottke et al., 2005a), and col-

lisional events can also inject fragments into chaotic resonances (Wetherill, 1977;
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Gladman et al., 1997). These processes (collisional fragmentation and semimajor

axis drift followed by injection into resonances) have contributed to a quasi steady-

state flux of small asteroids (D . 10 km) into the terrestrial planet region and are

responsible for delivering the majority of terrestrial planet impactors over the last

∼ 3.5 Gy (Bottke et al., 2000, 2002a,b; Strom et al., 2005).

In contrast, most members of the population of D & 30 km asteroids have

existed relatively unchanged, both physically and in orbital properties, since the time

when the current dynamical architecture of the main asteroid belt was established:

the Yarkovsky drift is negligble and the mean collisional breakup time is > 4 Gy

for D & 30 km asteroids. Asteroids with diameters between ∼ 10–30 km have

been moderately altered by collisional and non-gravitational effects. However, as

I show in Chapter 2, the asteroids with D & 10–30 km are also subject to weak

chaotic evolution and escape from the main belt on gigayear timescales. By means

of numerical simulations, the loss history of large asteroids in the main belt has been

computed, as described in Chapter 2. I also computed the cumulative impacts of

large asteroids on the terrestrial planets over the last ∼ 3 Gy.

The orbital distribution of large asteroids that exist today must have been de-

termined by dynamical processes in the early solar system, because large asteroids

do not uniformly fill regions of the main belt that are stable over the age of the

solar system (Minton and Malhotra, 2009, see also Chapter 3). The present study is

therefore additionally motivated by the need to understand better the origin of the

present dynamical structure of the main asteroid belt. The Jupiter-facing bound-

aries of some Kirkwood gaps are more depleted than the sunward boundaries, and

the inner asteroid belt is also more depleted than a model asteroid belt in which

only gravitational perturbations arising from the planets in their current orbits have

sculpted an initially uniform distribution of asteroids. In Chapter 3 I show that the

pattern of depletion observed in the main asteroid belt is consistent with the effects

of resonance sweeping due to giant planet migration that is thought to have occurred

early in solar system history (Fernandez and Ip, 1984; Malhotra, 1993, 1995; Hahn

and Malhotra, 1999; Gomes et al., 2005), and that this event was the last major
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dynamical depletion event experienced by the main belt. The last major dynamical

depletion event in the main asteroid belt likely coincided with the so-called Late

Heavy Bombardment (LHB) ∼ 3.9 Gy ago as indicated by the crater record of the

inner planets and the Moon (Strom et al., 2005).

1.2 Planet migration and the Late Heavy Bombardment

Early numerical simulations of the formation of the outer ice giants, Uranus and

Neptune, produced an unexpected result. In the simulations of Fernandez and Ip

(1984), the ice giants were grown from embryos 20% their present mass by accretion

within a massive planetesimal disk, with Jupiter and Saturn at their present masses.

They discovered that gravitational interactions between the gas giants, the ice giant

embryos, and the planetesimal disk caused the orbits of the gas giants and ice

giant embryos to migrate, with Jupiter migrating inward toward the Sun, and the

outermost four large bodies migrating outward. This effect is called planetesimal-

driven giant planet migration, and it can occur even if Uranus and Neptune have

their present mass, but only if there is a massive planetesimal disk beyond the orbits

of the giant planets. Planetesimal-driven planet migration can be understood in the

following way.

A close encounter between a planetesimal and a giant planet can either increase

or decrease the orbital angular momentum of the planetesimal and inversely that

of the planet. Whether the planetesimal experiences an increase or a decrease in

orbital angular momentum depends on details of the encounter, such as impact

parameter and encounter angle. Due to the relatively small sizes of the ice giants,

a planetesimal that experiences a close encounter with an ice giant is more likely

to remain gravitationally bound to the Sun than escape. Because the planetesimal

has experienced a close encounter with a planet, its orbit is strongly coupled to that

planet and it will likely experience future close encounters with it. If a single ice giant

were the only planet in the solar system, this would mean that any given planetesimal

would encounter it over and over again, until chance would allow for an encounter
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that sent the planetesimal out of the solar system completely. If this process were

repeated by large numbers of planetesimals, this would result in a net decrease in the

ice giant’s angular momentum, and its orbit would migrate sunward. However, the

real solar system contains two ice giants, Uranus and Neptune, and two gas giants,

Jupiter and Saturn. Planetesimals which have their angular momentum reduced by

a close encounter with Neptune can potentially begin to encounter Uranus. Such a

close encounter with Uranus can decouple the planetesimal from Neptune, reducing

the chances for further close encounters with the outermost ice giant. In this way

Uranus acts as a “sink” of planetesimals, and Neptune experiences a net increase

in angular momentum and its orbit grows as it passes planetesimals inward toward

Uranus.

A similar process occurs at Uranus, but in this case both Neptune and Saturn

acts as planetesimal sinks. Because Saturn is larger than Neptune, Saturn is a more

effective sink, and Uranus experiences a net increase in angular momentum after

encounters with numerous planetesimals. And again at Saturn, Jupiter acts as a

more effective sink than Uranus, so Saturn also migrates outwards. Therefore as the

icy planetesimals interact with the giant planets, they tend to be passed down from

one giant planet to its inward neighbor until they ultimately begin encountering

Jupiter. There are no more giant planets inward of Jupiter to act as effective sinks.

Also, because of Jupiter’s large size, a planetesimal is much more likely to escape

from the Sun on a hyperbolic trajectory after an encounter with Jupiter than with

any of the other three giant planets. Jupiter therefore experiences a net decrease in

angular momentum as it tosses planetesimals onto hyperbolic orbits sending them

forever out of the solar system.

Evidence in the structure of the Kuiper Belt suggests that the early solar system

experienced just such a phase of planetesimal-driven migration (Fernandez and Ip,

1984; Malhotra, 1993, 1995; Hahn and Malhotra, 1999; Levison et al., 2008). In

particular, both the large eccentricity of Pluto and its location within the 3:2 mean

motion resonance with Neptune are well explained by resonance capture during the

outward migration of Neptune (Malhotra, 1993). The existence of populations of
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Kuiper Belt Objects in the 3:2, 2:1, and other low order mean motion resonances

with Neptune were predicted as an outcome of planetesimal-driven planet migration

before these populations of resonant objects were discovered observationally (Mal-

hotra et al., 2000).

A natural outcome of planetesimal-driven planet migration is to enhance the

impact flux everywhere in the solar system. In the terrestrial planet region, planet

migration can enhance the impact flux in two ways. First, the scattering of icy

planetesimals by the giant planets would have resulted in many of those planetes-

imals crossing the orbits of the terrestrial planets. Second, because the dynamical

structure of the main asteroid belt is dominated by the influence of the giant plan-

ets (most importantly Jupiter and Saturn), any change in the orbital properties of

these planets in the past should have gravitationally disturbed the asteroid belt. As

the giant planets migrated, locations of mean motion resonances as well as secular

resonances would have swept across the asteroid belt, raising the eccentricities of

asteroids to planet-crossing values. This period of planet migration has been sug-

gested as a cause of the so-called Late Heavy Bombardment (LHB), assuming the

onset of migration was sufficiently delayed (Gomes et al., 2005).

The Late Heavy Bombardment has long remained a puzzling and controversial

topic in solar system chronology. The radiometric ages of ancient highland repre-

senting impact melt rocks returned during the American Apollo and Soviet Luna

missions showed an apparent clustering at ∼ 3.9 Gy ago (Turner et al., 1973; Tera

et al., 1973, 1974; Ryder, 1990). One interpretation of the clustering of impact melt

rock ages was that the collected samples represented the tail end of a long period of

intense impact bombardment that began with the initial accretion of solids in the

inner solar system 4.57 Gy ago (Hartmann, 1975; Russell et al., 2006). Hartmann

(1975) suggested that the lack of ancient rocks (those with impact resetting ages

& 4 Gy) on the Moon is the result of a “stone-wall” effect, that is that prior to 4 Gy

ago the impact rate was so high that all older impact melt rocks were obliterated

into micron-size dust by subsequent impacts. The samples returned in the lunar

missions of the late 1960s and early 1970s helped to calibrate crater counting-based



19

age estimates of lunar surface features, which suggest that lunar cratering rapidly

declined from a rate several orders of magnitude above the present value down to

within a factor of two or three above the present value at ∼ 3.8–3.9 Gy ago (Ry-

der, 1990; Stöffler and Ryder, 2001; Hartmann et al., 2000; Ryder, 2002; Neukum

et al., 2001). Under the stone-wall hypothesis, all ancient impact melt rocks have

been destroyed beyond any ability to date, and the only remaining fragments are

those produced at the end of this period of intense bombardment, ∼ 3.9 Gy ago.

The crater densities of several ancient lunar terrains along with estimates of their

absolute ages determined by radioisotope dating of samples returned by the Apollo

and Luna missions is shown in Fig. 1.1.
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Figure 1.1: Crater densities vs. age for select lunar terrains. A rapid decline in the
cratering rate at ∼ 3.9 Gy is observed. The age of Nectaris basin is controversial,
and several proposed ages are shown here. Data taken from Stöffler and Ryder
(2001).

Based on the resetting ages of several isotopic systems (U-Pb, K-Ar, and Rb-

Sr) from lunar rock samples of ancient heavily cratered terrains, an alternative

hypothesis, dubbed the “terminal lunar cataclysm,” was suggested by members of

the Caltech Lunatic Asylum. In this model, the Moon experienced a sudden and

intense spike in its impact rate at ∼ 3.9 Gy ago (Tera et al., 1974, 1973). Under this
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hypothesis, the lack of impact melts older than ∼ 4.0 Gy is taken as evidence that the

impact rate was relatively low in the interval between planetary accretion and 4 Gy

ago (Chapman et al., 2007). In particular, unique characteristics of the U-Pb isotopic

system suggest a cataclysmic event at ∼ 4 Gy ago from the lunar samples, rather

than simply the last stages of a monotonically declining impact rate stretching back

to the beginning of the solar system. The lead isotope 207Pb is a daughter product

of the decay of 235U, and 206Pb is a product of the decay of 238U, with different half

lives for each. When a mineral assemblage becomes closed (that is, whatever lead or

uranium exists in the rock or is subsequently produced by radioactive decay remains

in the rock until it is analyzed), then a plot of 207Pb/206Pb vs. 238U/206Pb falls on a

curve called the concordia, and the position on the curve is a function of the closure

age (see Fig. 1.2). If at any point in the rock’s history the system is reopened (that

is, either uranium or lead is allowed to escape or accumulate within the rock) and

then closed again, the resulting values of 207Pb/206Pb vs. 238U/206Pb will fall along

a discordant line that intersects the concordia at the initial closure age and again

at the age corresponding to the isotope mobilization event. Lead is a more volatile

element than uranium, and therefore loss or accumulation of lead during heating

of minerals drives the minerals to the discordant line. By measuring a variety of

minerals that had varying amounts of either loss or accumulation of lead during a

single heating event, the discordant line can be constructed, as shown in Fig. 1.2.

Tera et al. (1974) showed that a variety of Apollo samples show discordant U-

Pb ratios that intersect the concordia at both ∼ 4 Gy and ∼ 4.45 Gy ago. Their

interpretation for this result is that the lunar rocks became isotopically closed to

U and Pb after the Moon formed around ∼ 4.45 Gy ago. Then, a major global

thermal event occurred at ∼ 4 Gy ago that then opened the rocks to lead, allowing

both radiogenic and non-radiogenic lead to escape some minerals and accumulate in

others. The rocks have then remained closed to lead since this event. This scenario

formed the basis of their lunar cataclysm argument, in which the impact rate on the

Moon was low after its formation but then suddenly underwent a spike at ∼ 4 Gy.
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However, the Apollo and Luna samples were obtained over a relatively small

area of the lunar near side, and Haskin et al. (1998) has argued that the apparent

clustering of ages seen in these samples results from ejecta from a single basin impact

event, namely the formation of the Imbrium basin. Imbrium is the largest near side

lunar basin. In contrast, Norman et al. (2006) have identified at least four separate

heating events that cluster around 3.75–3.96 Gy ago on the basis of 40Ar–39Ar dating

of a variety of Apollo 16 impact melt breccias. They argue that each event seems

to have unique petrological characteristics that correlate with each other in time,

which implies that the clustering of ages is not the result of a single basin impact,

but several over a relatively short period of time.

One way to determine whether the apparent cluster of ages is simply an artifact
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of the limited sampling area of lunar samples is analyze lunar meteorites. Lunar

meteorites presumably originate from nearly anywhere on the Moon, and impact

melts from several lunar meteorites show a lack of ages older than 3.92 Gy (Cohen

et al., 2000, 2005). However, rather than clustering at 3.9 Gy, the lunar meteorites

impact melts show ages as young as 2.5 Gy. The meteorite record may also provide

some insights into the bombardment rate of within the main asteroid belt. The

class of meteorites called the H-chondrites record impact events in the 40Ar-39Ar

system suggesting impact events within the first ∼ 100 My of the solar system

(the era of planetary accretion), 3.6–4.1 Gy ago (the end of the LHB), but nothing

in-between Swindle et al. (2009).

The hypothesis that the lunar cratering record represents a cataclysmic spike

in the cratering rate on all the terrestrial planets (or perhaps even the entire solar

system) of . 100 My in duration, rather the tail end of the planetary accretion era

that began with the condensation of the first solids 4.57 Gy ago, has remained a

very controversial idea (Hartmann et al., 2000; Chapman et al., 2007). The differing

hypotheses have very different implications for the early history of Earth. The

Earth would have received an even higher rate of impacts than the Moon, due to its

larger geometric and gravitational cross-sections. The end of the LHB at ∼ 3.8 Gy

corresponds to the end of Earth’s Hadean eon. The Hadean is the name given to the

period of time on Earth between its formation at ∼ 4.5 Gy ago and the oldest known

rocks at ∼ 3.9 Gy ago. The Hadean was so named because it was assumed that

the Earth must have been a hellish place under such intense bombardment, where

scarcely would the ocean begin to condense when a giant impact would vaporize it

back into the atmosphere again (Sleep et al., 1989; Chyba, 1990; Nisbet and Sleep,

2001). Recently, however, evidence has emerged to contradict this picture. Small

numbers of zircon crystals have recently been discovered that have U-Pb ages well

within the Hadean. Zircon is an unusually hard mineral and can survive the intense

heat and pressure that rocks experience as they undergo processing due to Earth’s

plate tectonics. Several of these zircon crystals suggest that continental crust and

oceans were extent as early as 4.3 Gy ago (Harrison, 2005; Mojzsis et al., 2001).
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Under the declining impact hypothesis, Earth should not have had continental crust

nor liquid water oceans at this time, as the impact rate would have been far too

high (e.g., Ryder, 2002). In addition, some Hadean zircons which have formation

ages older than 4 Gy ago show metamorphic overgrowths that date to 3.9 Gy (Trail

et al., 2007). These overgrowths have been interpreted as representing short-lived

heating events that reset the U-Pb system in the rim of the crystal, leaving the cores

intact. These metamorphic overgrowths with ages of 3.94–3.97 Gy were seen in at

least three separate crystals, however all crystals were collected at the same site and

may represent a local event rather than a global one.

The hypothesis that LHB was simply the tail end of the initial accretion of the

terrestrial planets is also problematic in light of post-Apollo era studies of terrestrial

planet formation. Numerical modeling of formation of the terrestrial planets and the

isotopic composition of the bulk Earth indicates that the accretion of the terrestrial

planets happened on a very short timescale—on the order of a few tens of millions

of years (Greenberg et al., 1978; Halliday et al., 2003; Kenyon and Bromley, 2006),

and that the remnants of accretion should have been removed very quickly from the

inner Solar System (in tens of millions of years rather than hundreds of millions) due

to dynamics and collisional evolution (Bottke et al., 2007a). Thus it is very difficult

to connect the intense bombardment observed in the rock record of the Moon some

700 My after the formation of the planets with planetary accretion itself. Both the

evidence of the existence of Hadean continents and oceans, and the short timescale

for the depletion of accretion remnants from the inner Solar System, imply that the

Earth’s bombardment rate was likely much lower during most of the Hadean than is

implied by a steadily decaying bombardment rate. Therefore the LHB may indeed

have been a cataclysmic event that took place over a relatively short duration ending

at about 3.8–4.0 Gy ago.

Strom et al. (2005) showed that the heavily cratered terrains on the Moon,

Mars, and Mercury that are presumed to date to the time of the LHB all have

size-frequency distributions that are consistent with impactors originating in the

main asteroid belt. This evidence suggests that, at least by the end of the LHB,



24

the impactors that dominated the cratering record on the terrestrial planets were

ejected into terrestrial planet-crossing orbits from the main asteroid belt by a size-

independent mechanism. Resonance sweeping by planetesimal-driven giant planet

migration is a compelling mechanism for exciting main belt asteroids into planet-

crossing orbits in a size-independent way. A problem with the hypothesis that giant

planet migration caused the LHB is that the timing of the LHB puts the event

600–800 My after the formation of the solar system. The timing and duration of

planet migration is uncertain, but one successful model of planet migration, the

so-called “Nice model” has, through a suitable choice of initial conditions of the

solar system, demonstrated the ability to delay the onset of migration until up to

∼ 1 Gy after the formation of the solar system (Gomes et al., 2005). The Nice

model therefore provides a plausible mechanism for delaying giant planet migration

such that it coincides with the LHB, but the exact timing of the destabilizing trigger

at ∼ 700 My after planet formation is not a necessary outcome. As I will show in

Chapter 5, planet migration itself likely took place over a very time span (. 107 yr),

and therefore any model which proposes to link planetesimal-driven planet migration

with the LHB must include a mechanism to delay the onset of migration for several

108 yr. Regardless of the controversies surrounding the cause and duration of the

LHB, the hypothesis that the giant planets experienced a phase of planetesimal-

driven migration is well supported by observations, and in Chapter 3 I show that

patterns of depletion observed in the asteroid belt are consistent with the effects of

sweeping of resonances during the migration of the outer giant planets.

1.3 Overview of the present work

Motivated by the compelling link between planetesimal-driven planet migration,

the dynamical history of the asteroid belt, and the LHB, I seek to quantify the

dynamical effects that planet migration produced on the early asteroid belt. I begin

by looking for clues in the present-day structure of the observed asteroid belt, using

observations to infer the post-LHB dynamical history of asteroids. I describe in
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detail the dynamical models of the present-day asteroid belt in Chapter 2. These

models are constrained by the observed orbital distributions of large asteroids in

the main belt. I use these models to explore the dynamical mechanism by which

large asteroids have been lost from the main belt over the last 4 Gy, and show that

the impact rate of large (D > 10 km) asteroids onto the terrestrial planets may

be significantly underestimated. In Chapter 3 I use the results of the asteroid belt

models developed in Chapter 2 to show that asteroids currently do not uniformly fill

all of the stable regions of the asteroid belt. Much of Chapter 3 has been published

as Minton and Malhotra (2009).

Asteroid eccentricity excitation by the sweeping of the ν6 resonance is the pri-

mary mechanism by which most asteroids were removed from the asteroid belt and

placed onto planet-crossing orbits during the epoch of planetesimal-driven planet

migration. In order to better understand the process by which asteroid depletion

occurred during planet migration, I have developed an analytical model of the sweep-

ing ν6 secular resonance. In Chapter 4 I show how the secular dynamics of the solar

system is changed when Jupiter and Saturn are displaced from their current semi-

major axes. I use the method of Fourier analysis of long-term integrations of the

two giant planets to show how the magnitude of the g6 eigenfrequency (which deter-

mines the position of the ν6 resonance) changed as a function of the giant planets’

migration history. I also show that a relatively simple secular theory is an adequate

model of the change in the g6 eigenfrequency as a function of Saturn’s position for

the majority of Jupiter and Saturn’s migration history. The secular theory is based

on the Laplace-Lagrange linear secular theory with the correction due to the prox-

imity of Jupiter and Saturn to their 2:1 mean motion resonance that was developed

by Malhotra et al. (1989). I use results derived in Chapter 4 as inputs to a model

of the excitation of asteroids by the sweeping ν6 resonance, in Chapter 5. The ana-

lytical model of the sweeping ν6 resonance explicitly relates an asteroids change in

eccentricity excitation to its initial eccentricity and the migration rate of Saturn. I

use the results of the analytical model to set an upper limit on the rate of migration

of Saturn. I also show that a peculiar feature of the eccentricity distribution of
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asteroids in the main belt is consistent with the effects of the sweeping ν6, and may

help further constrain the migration rate of Saturn.

Establishing a link between the epoch of planet migration and the Late Heavy

Bombardment may require further observational tests. In Chapter 6 I explore

whether “pollution” of the solar atmosphere by lithium may have left its trace

in the lunar rock record. Lithium is an element that is more rare in the Sun than in

planetesimals because lithium is destroyed by thermonuclear fusion at relatively low

temperatures. I model the abundance of solar lithium and the ratio of two isotopes

of lithium, 6Li and 7Li, under a variety of assumptions. These models may also

help observationally identify exosolar systems experiencing their own versions of the

LHB.

I include here a table of all symbols used and their basic definitions.
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Table 1.1: Symbols and their definitions
Symbol Definition

Dynamics and orbital elements
G Universal gravitational constant
a Semimajor axis
e Eccentricity
i Inclination
̟ Longitude of pericenter
Ω Longitude of the ascending node
λ Mean longitude

J Conjugate momentum
√

a(1 −
√

1 − e2)
τ e-folding timescale
gi Secular eigenfrequency of planet i
βi Phase of the eigenmode of planet i

E
(i)
j Amplitude of the jth eigenmode in planet i

Projectile and crater physical properties
D Diameter (of projectile in the context of cratering)
Dc Final crater diameter
H Absolute visual magnitude
m Mass
ρ Density
ρv Geometric visual albedo
θ Impact angle
N Number
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CHAPTER 2

DYNAMICAL EROSION OF THE ASTEROID BELT

2.1 Introduction

Knowledge about the distribution of the asteroids in the main belt just after that

last major depletion event may help constrain models of that event. Quantifying

the dynamical loss rates from the asteroid belt also help us understand the history

of large impacts on the terrestrial planets. Motivated by these considerations, in

this chapter I explore the dynamical erosion of the main asteroid belt, which is the

dominant mechanism by which large asteroids have been lost over the last ∼ 4 Gy.

I have performed a series of n-body simulations of large numbers of test particles

in the main belt region over long periods of time (4 Gy and 1.1 Gy). I derive

an empirical functional form for the population decay and loss rate of main belt

asteroids. Finally, I discuss the implications of my results for the history of large

asteroidal impacts on the terrestrial planets.

2.2 Numerical simulations

My long term orbit integrations of the solar system used a parallelized implemen-

tation of a second-order mixed variable symplectic mapping known as the Wisdom-

Holman Method (Wisdom and Holman, 1991; Saha and Tremaine, 1992), where only

the massless test particles are parallelized and the massive planets are integrated in

every computing node. My model included the Sun and the planets Mars, Jupiter,

Saturn, Uranus, and Neptune. All masses and initial conditions were taken from

the JPL Horizons service1 on July 21, 2008. The masses of Mercury, Venus, Earth,

and the Moon were added to the mass of the Sun.

1see http://ssd.jpl.nasa.gov/?horizons
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Test particle asteroids were given eccentricity and inclination distributions sim-

ilar to the observed main belt, but a uniform distribution in semimajor axis. The

initial eccentricity distribution of the test particles was modeled as a Gaussian with

the peak at µ = 0.15 and a standard deviation of 0.07, a lower cutoff at zero, and an

upper cutoff above any value which would lead to either a Mars or Jupiter-crossing

orbit, whichever was smaller. The initial inclination distribution was modeled as a

Gaussian with the peak µ = 8.5◦ and standard deviation of 7◦, and a lower cutoff

at 0◦. The other initial orbital elements (longitude of ascending node, longitude of

perihelion, and mean anomaly) were uniformly distributed. The eccentricity and

inclination distributions of the adopted initial conditions and those of the observed

asteroids of absolute magnitude H ≤ 10.8 are shown in Fig. 2.1.

Mars was the only terrestrial planet integrated in my simulations. Despite its

small mass, Mars has a significant effect on the dynamics of the inner asteroid belt

due to numerous weak resonances, including three-body Jupiter-Mars-asteroid res-

onances (Morbidelli and Nesvorny, 1999). Two simulations were performed: Sim 1,

with 5760 test particles integrated for 4 Gy, and Sim 2, with 115200 test particles

integrated for 1.1 Gy. In each of these simulations an integration step size of 0.1 yr

was used. Particles were considered lost if they approached within a Hill radius of

a planet, or if they crossed either an inner boundary at 1 AU or an outer boundary

at 100 AU.

I define time t = 0 as the epoch when the current dynamical architecture of the

main asteroid belt and the major planets was established. What I mean by this is

the time at which any primordial mass depletion and excitation has already taken

place (see O’Brien et al., 2007), and any early orbital migration of giant planets has

finished (Fernandez and Ip, 1984; Malhotra, 1993; Strom et al., 2005; Gomes et al.,

2005; Minton and Malhotra, 2009). At this epoch the main belt would have already

had its eccentricity and inclination distributions excited by some primordial process,

and its semimajor axis distribution shaped by early planet migration. Therefore,

the e and i distributions at t = 0 likely resembled those of the present-day asteroid

belt, although subsequent long-term evolution likely altered them somewhat from
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Figure 2.1: Eccentricity and inclination distributions. a),b) The distributions of the
931 observed bright (H ≤ 10.8) asteroids in the main belt that are not members of
collisional families, from the AstDys online data service (Knežević and Milani, 2003;
Nesvorný et al., 2006). c),d) The initial e and i distributions for Sim 1 (the 5760
particle simulation). e),f) The initial e and i distributions for Sim 2 (the 115200
particle simulation).
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their primordial state. Current understanding of planetary system formation sug-

gests that the epoch prior to when I define t = 0 could have been several million

to several hundred million years subsequent to the formation of the first solids in

the protoplanetary disk; the first solids have radiometrically determined ages of

4.567 Gy (Russell et al., 2006).

2.3 Main asteroid belt population evolution

The loss history of particles from Sim 1 and Sim 2 are shown in Fig. 2.2. The loss

histories are nearly indistinguishable over the 1.1 Gy length of Sim 2. The loss

history appears to go through two phases. The first phase, lasting until ∼ 1 My, is

characterized by a rapid loss of particles from highly unstable regions, such as the

major Kirkwood gaps and the ν6 secular resonance. The slope of the loss rate on a

log-linear scale changes rapidly between 0.3–1 My until the second phase is reached,

which lasts from 1 My until at least the end of Sim 1 at 4 Gy. The slope of the loss

rate on a log-linear scale continues to change during the second phase, but only over

much longer timescales and by a much smaller amount than during the first phase.

The particle removal times and particle fates (whether they become inward-

going Mars-crossers, or outward-going Jupiter-crossers) for Sim 2 are both shown in

Fig. 2.3. I find that the particles that are lost during the initial 1 My (the red to light-

green points) are generally those with high initial eccentricity, particles from the ν6

resonance (appearing as a curving yellow band in the semimajor axis vs. inclination

plot), and particles in the strongly chaotic mean motion resonances with Jupiter

(the Kirkwood gaps). These maps are similar to those produced by Michtchenko

et al. (2009), however their maps were coded by spectral number (more chaotic

orbits having a larger spectral number) using 4.2 My integrations. The apparent

rapid change in slope around 105–106 years is likely due mostly to the emptying

of asteroids from the ν6 resonance region (see also the upper right-hand panel of

Fig. 2.3). Also, in the outer asteroid belt the sheer proximity to Jupiter and the

resulting strong short-term perturbations cause particles to be lost very rapidly.
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Many of these regions may never have accumulated asteroids, and therefore the

loss of these particles represents a numerical artifact in the simulation due to over-

filling the model asteroid belt with test particles. For instance, if the asteroid belt

formed with the giant planets in their current positions, those regions would always

have been unstable to asteroids, so none could have formed there. However, regions

of the asteroid belt that are currently highly unstable may not always have been.

Models of early solar system history indicate large changes to the orbital properties

of the giant planets (Fernandez and Ip, 1984; Hahn and Malhotra, 1999; Tsiganis

et al., 2005). This “numerical artifact” is useful in indicating that the timescales of

clearing in the strongly unstable zones is . 1 My. Below I discuss in detail the loss

of asteroids from the more stable regions of the main belt.

2.3.1 Historical population of large asteroids.

I used the test particle loss history of Sim 1 to estimate the loss history of large

asteroids from the main belt and the large asteroid impact rate on the terrestrial

planets. To do this I scaled f , the fraction of surviving particles in Sim 1 at t = 4 Gy,

to the number of large asteroids in the current main belt. For this purpose, I define

“large asteroid” as an asteroid with D > 30 km. For most asteroids, size is not

as well determined as absolute magnitude. If the asteroid visual albedo, ρv, is

known, the absolute magnitude can be converted into a diameter with the following

formula (Fowler and Chillemi, 1992):

D =
1329 km√

ρv

10−H/5. (2.1)

Because asteroids can have a range of albedos, converting from brightness to di-

ameter is fraught with uncertainty in the absence of albedo measurements. For

simplicity, I adopt a single albedo, ρv = 0.09, which is approximately representative

over the size range of objects considered here (Bottke et al., 2005a). In subsequent

analysis I will use absolute magnitude as a proxy for size.

Using Eq. (2.1) and the assumption of albedo, an asteroid of diameter D = 30 km

has an absolute magnitude H = 10.8. The main belt is observationally complete
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Figure 2.2: Loss history of test particles in the main asteroid belt region of the solar
system from both Sim 1 (5760 particles for 4 Gy) and Sim 2 (115200 particles for
1.1 Gy). The left-hand axis is the fraction of the original test particle population that
have survived the simulation at a given time. The right-hand axis is the estimated
number of large asteroids in the asteroid belt, and is computed by equating the
fraction remaining at t = 4 Gy with the number of observed H ≤ 10.8 asteroids. The
observational sample used is the 931 asteroids with H ≤ 10.8 excluding members of
collisional families.
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Figure 2.3: Removal statistics of the test particles in Sim 2 (115200 particles) as
function of their initial orbital elements. In the upper panels, the points are colored
to indicate their lifetime in the simulation, with red being the shortest-lived particles
and blue being the longest-lived particles (particles surviving at the end of the
simulation were removed for clarity). In the lower panels, the points are colored to
indicate the direction in which they are lost: red indicates loss due to either a close
encounter with Mars or removal at the inner boundary at 1 AU, blue indicates loss
due either a close encounter with a giant planet or removal at the outer boundary
at 100 AU, and black indicates particles that survived the entire 1.1 Gy simulation.



35

for asteroid absolute magnitudes as faint as H = 13 (Jedicke et al., 2002). While

most H ≤ 10.8 asteroids have existed relatively unchanged over the last 4 Gy,

a few breakup events have created some large fragments over this timespan. For

example, there are five members of the Vesta family with H < 10.8 (Nesvorný

et al., 2006). Collisional fragments produced over the last 4 Gy can “contaminate”

the observed H ≤ 10.8 asteroid population, and collisional breakup events have

also disrupted some primordial H ≤ 10.8 asteroids. These collisional processes

complicate the estimate of the dynamical loss history of large asteroids over the

age of the solar system. Happily, most collisional family members with H ≤ 10.8

have been identified (Nesvorný et al., 2006), and can be removed to further refine

the observation sample. The database of (Nesvorný et al., 2006) was also made

with some attempt to remove interlopers that have similar dynamical properties as

a family, but a different spectral classification that indicates they are not members

of the collisional family (Mothé-Diniz et al., 2005)

The observational data set I used was the 1137 asteroids with H ≤ 10.8 ob-

tained from the AstDys online data service (Knežević and Milani, 2003). Using the

family classification system of Nesvorný et al. (2006), 206 (18%) of these asteroids

are identified members of collisional families. I eliminated collisional family mem-

bers and used the remaining sample of 931 asteroids for the scaling. Implementing

this normalization, Fig. 2.2 shows the loss history of the main belt asteroids with

the population scale on the right-hand axis. Because the dynamical depletion of

asteroids from the main belt is approximately logarithmic, a roughly equal amount

of depletion occurred in the time interval 10–200 My as in 0.2–4 Gy. I find that

the asteroid belt at t = 200 My would have had 28% more large asteroids than

today, and the asteroid belt at t = 10 My would have had 64% more large asteroids

than today. My calculation indicates that ∼ 2200 large asteroids (H ≤ 10.8) may

have been lost from the main asteroid belt by dynamical erosion since the current

dynamical structure was established, but ∼ 1600 of those asteroids would have been

lost within the first 10 My.
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2.3.2 Non-uniform pattern of depletion of asteroids

Fig. 2.4 compares the results of Sim 1 with the observational sample (H ≤ 10.8

asteroids, excluding collisional family members).2 The proper semimajor axes of

the surviving particles from Sim 1 at the end of the 4 Gy integration were com-

puted using the public domain Orbit93 code (Knezevic et al., 2002). The bin size of

0.015 AU was chosen using the histogram bin size optimization method described

by Shimazaki and Shinomoto (2007) (See A). Fig. 2.4b is the ratio of the data sets.

I find that the observed asteroid belt is overall more depleted than the dynamical

erosion of an initially uniform population can account for, and there is a partic-

ular pattern in the excess depletion: there is enhanced depletion just exterior to

the major Kirkwood gaps associated with the 5:2, 7:3, and 2:1 mean motion reso-

nances (MMRs) with Jupiter (the regions spanning 2.81–3.11 AU and 3.34–3.47 AU

in Fig. 2.4a); the regions just interior to the 5:2 and the 2:1 resonances do not

show significant depletion (the regions spanning 2.72–2.81 AU and 3.11–3.23 AU in

Fig. 2.4a), but the inner belt region (spanning 2.21–2.72 AU) shows excess depletion.

Minton and Malhotra (2009) showed that the observed pattern of excess deple-

tion is consistent with the effects of the sweeping of resonances during the migration

of the outer giant planets, most importantly the migration of Jupiter and Saturn.

There is evidence in the outer solar system that the giant planets – Jupiter, Saturn,

Uranus and Neptune – did not form where we find them today. The orbit of Pluto

and other Kuiper Belt Objects (KBOs) that are trapped in mean motion resonances

with Neptune can be explained by the outward migration of Neptune due to inter-

actions with a more massive primordial planetesimal disk in the outer regions of the

solar system (Malhotra, 1993, 1995). The exchange of angular momentum between

planetesimals and the four giant planets caused the orbital migration of the giant

2Fig. 2.4a is similar to Fig. 1a of Minton and Malhotra (2009), but with my sample of 931

asteroids with H ≤ 10.8 that are not members of collisional families. The results I report in this

section are similar to those in Chapter 3; because they are based on simulations with much larger

number of particles, their statistical significance is improved.
3Found at: http://hamilton.dm.unipi.it/astdys/
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planets until the outer planetesimal disk was depleted of most of its mass, leaving

the giant planets in their present orbits (Fernandez and Ip, 1984; Hahn and Mal-

hotra, 1999; Tsiganis et al., 2005). As Jupiter and Saturn migrated, the locations

of mean motion and secular resonances swept across the asteroid belt, exciting as-

teroids into terrestrial planet-crossing orbits, thereby greatly depleting the asteroid

belt population and perhaps also causing a late heavy bombardment in the inner

solar system (Liou and Malhotra, 1997; Levison et al., 2001; Gomes et al., 2005;

Strom et al., 2005).

I identified six zones of excess depletion; these are labeled I–VI in Fig. 2.4b. Zone

I would have experienced depletion primarily due to the sweeping ν6 resonance, with

some contribution possibly from the 3:1 MMR. Zones II and IV are the zones that lie

on the sunward sides of the 5:2 and 2:1 resonances, respectively, and are hypothesized

to have experienced the least amount of depletion due to sweeping mean motion

resonances (MMRs) and secular resonances under the interpretation of Minton and

Malhotra (2009). Zones III, V, and VI are on the Jupiter-facing sides of the 5:2, 7:3,

and 2:1 MMRs, respectively, and are hypothesized to have experienced depletion

due to the sweeping of these resonances. The average ratio between the model and

observed population per 0.015 AU bin in each zone is quantified in Fig. 2.5.

2.3.3 Empirical models of population decay

The loss rate of small bodies from various regions of the solar system has been

studied by several authors (see Dobrovolskis et al., 2007, for a comprehensive review

of the recent literature on the subject). Holman and Wisdom (1993) found that the

decay of a population of numerically integrated test particles on initially circular,

coplanar orbits distributed throughout the outer solar system was asymptotically

logarithmic, that is, ṅ ∝ t−1, where n is the number of test particles remaining in

the simulation at a given time t. Dobrovolskis et al. (2007) showed that, for many

small body populations, loss is described as a stretched exponential decay, given by

the Kohlrausch formula,

f = exp
(

− [t/t0]
β
)

, (2.2)
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Figure 2.6: Comparison of empirical decay laws for the main asteroid belt region
from Sim 1 (5760 particles for 4 Gy). The result from Sim 1 is plotted in five
different ways. Bottom curve (black): fraction f of particles surviving (left-hand
scale) vs. time (bottom scale). Next-to-lowest curve (green): log f (right-hand
scale) vs. elapsed time (bottom scale). Middle curve (red): log f (right-hand scale)
vs.

√
t (top-scale). Next-to-uppermost curve (blue): f (left-hand scale) vs. log t

(interior scale). Top curve (yellow): log f (right-hand scale) vs. log t (interior scale).
Only the yellow and blue curves resemble straight lines in this format, and only for
t & 106 yr.

where f is the fraction remaining of the initial population (f = n(t)/Ntot). In the

cases that Dobrovolskis et al. studied, namely loss rates of small body populations

orbiting giant planets, they found that β ≈ 0.3. For reference, note that a value of

β = 1/2 is expected for a diffusion-dominated process for the removal of particles;

in this case a plot of log of the number of remaining particles vs. square root time

would be a straight line.

In Fig. 2.6 I adopt a similar plot style as in Dobrovolskis et al. (2007) (their

Fig. 1) as a way of evaluating various empirical decay laws for the results of Sim 1.

Unlike the cases explored by Dobrovolskis et al., stretched exponential decay with

β ∼ 0.3–0.5 is a very poor model for the asteroid belt. Fig. 2.6 suggests either

logarithmic or power law decay would be better models of particle decay from this
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simulation for t > 106 yr. Using a logarithmic decay law of the form:

f = A − B ln(t/1 yr), (2.3)

and a power law decay of the form:

f = C(t/1 yr)−D, (2.4)

where A, B, C, and D are positive and dimensionless constants, I can look for the

logarithmic, power law, and stretched exponential functions that best fit the decay

history of Sim 1 for t > 1 My. The best fit parameters for each of these decay laws

are listed in Table 2.1. Note that the best fit exponent D for the power law decay

is close enough to zero that it is not very different than the logarithmic decay over

the range of timescales considered here.

Table 2.1: Best fit decay laws for Sim 1 (5760 particles for 4 Gy)
Decay law Parameters Valid range (yr)
Stretched exponential (Eq. 2.2) log t0 = 8.6986 ± 0.0057 t > 106

β = 0.1075 ± 0.0004
Logarithmic (Eq. 2.3) A = 1.1230 ± 0.0020 t > 106

B = 0.0377 ± 0.0001
Power law (Eq. 2.4) C = 1.9556 ± 0.0027 t > 106

D = 0.0834 ± 0.0001
Piecewise logarithmic (Eq. 2.5) A1 = 1.3333 ± 0.0006 106.0 < t < 107.2

B1 = 0.05130 ± 0.00004
A2 = A1 + (B2 − B1) · 7.2 107.2 < t < 108.3

B2 = 0.02695 ± 0.00011
A3 = A2 + (B3 − B2) · 8.3 108.3 < t < 109.1

B3 = 0.02695 ± 0.00011
A4 = A3 + (B4 − B3) · 9.1 109.1 < t < 109.6

B4 = 0.03079 ± 0.00018

The difference between various empirical decay laws and the simulation output

from Sim 1 is shown in Fig. 2.7. The format of Fig. 2.7 is similar to that of Fig. 2

of Dobrovolskis et al. (2007), but here the y-axis is ∆ log | ln f | = log | ln fsim| −
log | ln ffit|, where the subscripts sim and fit refer to the simulation data and best fit
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model, respectively. A perfect fit would plot as a straight line with ∆ log | ln f | = 0.

The power law function is a good fit, but with a small exponent D, which makes it

practically similar to a logarithmic decay. The best fit stretched exponential value

of β obtained here is much smaller than the value of ∼ 0.3–0.5 obtained by many

of the cases shown by Dobrovolskis et al. (2007). This may indicate that classical

diffusion does not dominate the loss of asteroids from the main belt.

From Fig. 2.7 there is no clear preference for one or the other functions for the

decay model. However, with some experimentation, I found that an improved fit

can be obtained by considering a piecewise logarithmic decay of the form:

fi = Ai − Bi ln(t/1 yr), ti < t < ti+1, (2.5)

where Ai and Bi are positive coefficients. A physical justification for a piecewise

logarithmic decay law is outlined in the following argument. If the region under

study were divided into smaller subregions, and the loss of particles from each of

those subregions follows a logarithmic decay law, then the linear combination of the

decay laws for all subregions is the decay law for the total ensemble of particles,

and is itself logarithmic. However, if any subregion completely empties of particles,

then that region remains empty (it cannot have negative particles), and so the decay

law of that region no longer contributes to the decay law for the total ensemble of

particles; the decay of the ensemble then undergoes an abrupt change in slope. A

piecewise logarithmic decay law for an ensemble of particles originating from the

main asteroid belt region implies that the intrinsic loss rate from the asteroid belt is

best described as ṅ ∝ t−1, but with different proportionality constants for different

regions inside the belt.

I found that the model that minimized ∆ log | ln f | for t > 106 yr is a four

component piecewise logarithmic decay law with slope changes at 107.4 yr, 108.3 yr,

and 109.1 yr. I performed a least-squares fit to the loss history of Sim 1, fitting it to

the four component piecewise function given by Eq. (2.5); the best fit parameters are

given in Table 2.1. The residuals for the piecewise logarithmic decay law are much

reduced, compared to the other empirical models considered, as shown in Fig. 2.7.
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2.4 The effect of Mars

Morbidelli and Nesvorny (1999) showed that the planet Mars is responsible for

contributing to orbital chaos of asteroids through weak mean motion resonances as

well as three-body resonances. Sim 1b used the same inputs as Sim 1, but did not

include the planet Mars directly, but simulated its effect indirectly by increasing the

inner cutoff distance to 1.5 AU. This allows us to roughly distinguish the full long-

range gravitational perturbing effects of Mars on the asteroid belt from the effects of

only close encounters with that planet. Comparisons between loss histories between

Sims 1 and 1b for the entire asteroid belt as well as 0.8 AU wide subdivisions

are shown in Fig. 2.8. The best fit logarithmic law decay for Sim 1b has the slope

B = 0.0261, compared with D = 0.0377 for Sim 1. The full effects of Mars increased

the total number of particles lost from of the main belt region over the time interval

1 My–4 Gy by 8%. As Fig. 2.8 illustrates, the additional loss is primarily confined

to the inner asteroid belt. This indicates that the effect of Mars due to distant

gravitational perturbations is more potent to the loss of asteroids than its effect as

a inner barrier alone.

2.5 Large asteroid impacts on the terrestrial planets

Although the impact history of the terrestrial planets is numerically dominated by

small impactors, D . 10 km, the larger but infrequent impactors are also of great

interest as they cause the more dramatic geological and environmental consequences.

The dynamical origins of the latter have been less well studied because of the un-

avoidable small number statistics issues with them. Unlike the Yarkovsky effect,

which is primarily responsible for populating the NEA population with D . 10 km

asteroids, the dynamical chaos in the asteroid belt is a size independent process and

dynamical erosion is the primary loss mechanism for large asteroids. Migliorini et al.

(1998) investigated how D > 5 km asteroids from the main belt become terrestrial

planet-crossing orbits, and found that weak resonance in the inner solar system were

likely responsible for populating the NEOs. I used my simulations to quantify the
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Figure 2.8: Loss history of test particles in the main asteroid belt region of the
solar system from Sim 1 (5760 particles for 4 Gy) and for the variant Sim 1b (The
same input as Sim 1 but without Mars and the inner cutoff distance moved up to
1.5 AU. The top left panel is for the entire ensemble of particles from 2.0–4.4 AU.
The top right, bottom left, and bottom right panels are for inner, middle, and outer
subregions 0.8 AU in width, respectively. The gravitational perturbations due to
Mars cause the overall loss to be steeper than otherwise, with the most pronounced
difference in the inner region of the main belt. The outer region of the main belt is
not affected by perturbations from Mars.
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impact rates for the larger asteroidal impactors.

As shown in §2.3.3, the long term dynamical loss of asteroids from the main belt

is nearly logarithmic in time. The fate of any particular asteroid (the probability

that it will impact a particular planet, the Sun, or be ejected from the solar system)

is strongly dependent on its source region in the main belt (Morbidelli and Gladman,

1998; Bottke et al., 2000). For example, particles originating from the region near

the ν6 secular resonance at the inner edge of the main belt have a ∼ 1–3% chance

of impacting the Earth (Morbidelli and Gladman, 1998; Ito and Malhotra, 2006),

whereas objects originating further out in the asteroid belt have much lower Earth

impact probabilities (Gladman et al., 1997). My simulations indicate that large

asteroidal impactors that enter the inner solar system may originate throughout the

main belt, so I needed to compute the overall impact probabilities for impactors

originating by dynamical chaos from the main belt as a whole. I do this by means of

an additional numerical simulation that yields the terrestrial planet impact statistics

for those particles of Sim 1 that were ‘lost’ to the inner solar system. I then combine

the impact probabilities with the 4 Gy loss history of large asteroids (Fig. 2.2) to

estimate the number of large impacts onto the terrestrial planets. The details of

these calculations are described below.

2.5.1 Impact probabilities

In my initial simulations I did not follow any of the particles all the way to impact

with any of the planets; particles that entered the inner solar system were stopped

either at the Hill sphere of Mars or at an inner boundary of 1 AU heliocentric

distance. To compute the impact probabilities for the terrestrial planets, I performed

an additional simulation using the results of Sim 1. Only inward-going particles from

Sim 1 were considered, as outward-going ones are overwhelmingly likely to collide

with or be ejected from the solar system by Jupiter, and as Figs. 2.3 and 2.4a

illustrate, there are few observed asteroids beyond 3.4 AU, where outward-going

asteroids dominate. I first identified a set of “late” particles from Sim 1 that were

removed after 1 Gy at an inner boundary (either at the cutoff at 1 AU or by crossing
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Figure 2.9: Distribution of initial orbital elements of the “late” particles from Sim 1.
These particles left the asteroid belt after 1 Gy. Only particles that were removed
at an inward-going boundary are shown here, that is they were removed from Sim 1
either by crossing the inner barrier at 1 AU or crossing the Hill sphere of Mars.

the Hill sphere of Mars). The Kirkwood gaps are mostly emptied of asteroids by

1 Gy, as shown in Fig. 2.3. Fig. 2.9 shows the initial semimajor axes, eccentricities,

and inclinations of these 136 particles. Note from this figure that asteroids lost due

to dynamical erosion after 1 Gy can come from nearly anywhere in the main belt.

First I captured the positions and velocities of the 136 late particles from Sim 1

at the time of their removal. I cloned each of the late particles 128 times, such

that rclone = (1 + δr)roriginal and vclone(1 + δv)voriginal, where |δr|, |δv| < 0.001. The

resulting 17408 particles were integrated using the MERCURY integrator with its

hybrid symplectic algorithm capable of following particles through close encounters

with planets (Chambers, 1999). In this simulation, which I designate Sim 3, all

eight major planets were included, the nominal integration step size was 2 days,

and an accuracy parameter of 10−12 was chosen. The particles were removed if they

approached within the physical radius of the Sun or a planet, or if they passed

beyond 100 AU. The simulation was run for 200 My. The fraction remaining as a

function of time for Sim 3 is shown in Fig. 2.10.
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Figure 2.10: Loss history for Sim 3. Particles were lost from this simulation when
the impacted a planet, the Sun, or passed beyond 100 AU.

First I captured the positions and velocities of the 136 late particles from Sim 1

at the time of their removal. I cloned each of the late particles 128 times, such

that rclone = (1 + δr)roriginal and vclone(1 + δv)voriginal, where |δr|, |δv| < 0.001. The

resulting 17408 particles were integrated using the MERCURY integrator with its

hybrid symplectic algorithm capable of following particles through close encounters

with planets (Chambers, 1999). In this simulation, which I designate Sim 3, all

eight major planets were included, the nominal integration step size was 2 days,

and an accuracy parameter of 10−12 was chosen. The particles were removed if they

approached within the physical radius of the Sun or a planet, or if they passed

beyond 100 AU. The simulation was run for 200 My.

For every particle that was removed in Sim 3 (either by impact or escape) I

determined from which of the 136 source particles from Sim 1 it was cloned. I

used the initial semimajor axis of a given source particle and placed it into a bin of

0.015 AU in width, which I call the source bin. I then weighted the removal event

by a factor equal to the ratio of the abundance of observed H ≤ 10.8 asteroids to

the abundance of particles at the end of Sim 1 in the source bin. The weighting

factor, which also quantifies the relative amounts of depletion throughout the as-
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teroid belt, is shown in Fig. 2.4b. This weighting accounts for the differences in

the orbital distribution of my simulated asteroid belt and the observed large aster-

oids. The raw impact statistics as well as the probabilities weighted based on the

distribution of observed asteroids are tallied in Table 2.2. These give the probabil-

ity that an asteroid originating in the main belt, and which becomes a terrestrial

planet-crosser by dynamical chaos, will impact a planet, the Sun, or be ejected from

the solar system. The unweighted and weighted terrestrial impact probabilities for

the terrestrial planets differ by < 10%, and both give an impact probability onto

the Earth of ∼ 0.3%. The weighted impact numbers as a function of time onto

the terrestrial planets, the Sun, and the number ejected (removed after crossing the

outer boundary at 100 AU) are shown in Fig. 2.11
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Figure 2.11: Weighted number of loss events from Sim 3.

2.5.2 Flux of large (D>30 km) impactors on the terrestrial planets

I used the weighted impact probabilities shown in Table 2.2 and my model of the

loss history of asteroids from Sim 1 to estimate the number of D > 30 km impacts

onto the terrestrial planets since the end of the LHB. Here I make the assumption

that t = 0 in my model is about 4 Gy ago, roughly the post-LHB era. Because the

loss rate of asteroids is approximately logarithmic, the loss rate is much higher at
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Table 2.2: Impact probabilities for the terrestrial planets for Sim 3. Ejected (OSS)
refers to particles that either crossed the outer barrier at 100 AU or encountered
the Hill sphere of a giant planet.

Fate Number % Weighted %
Ejected (OSS) 13862 78.6 70.0
Survived 269 1.55 13.7
Sun 3111 17.9 15.3
Mercury 10 0.057 0.061
Venus 74 0.425 0.396
Earth 56 0.322 0.306
Mars 26 0.149 0.140

early times than later ones. The early time is likely to have coincided with the tail

end of the LHB itself; separating out the component of the impact flux that is due

to the LHB rather than to dynamical erosion is problematic. I therefore consider

only the dynamical loss at t > 100 My in my model as part of the post-LHB epoch.

With these assumptions, my model finds that since the end of the LHB, the Earth

has experienced ∼ 1 impact of a D > 30 km asteroid. Venus, with its slightly higher

impact probability than Earth, should have experienced ∼ 1.3 impacts of this size

since the end of the LHB. My model also suggests that Mars and Mercury have had

∼ 0.6 and ∼ 0.1 impacts of D > 30 km asteroids, respectively. These small numbers

are consistent with there having been no impacts of D > 30 km asteroids on the

terrestrial planets since the end of the LHB.

2.5.3 Comparison with record of large impact craters on the terrestrial planets

Known large impact basins on the terrestrial planets are generally of ages confined

to the first ∼ 800 My of solar system history, the Late Heavy Bombardment (Hart-

mann, 1965; Ryder, 2002). Excluding those, I consider only the post-LHB large

craters on Earth and Venus.

The three largest known impact structures on Earth are Vredefort, Sudbury, and

Chicxulub craters, each with final crater diameters Dc < 300 km and ages less than

∼ 2 Gy (Grieve et al., 2008). Turtle and Pierazzo (1998) argue that Vredefort crater
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has a diameter of Dc < 200 km, which would make the final diameters of all of the

largest known impact craters on Earth Dc ∼ 130–200 km. At least one of these

large impact events has been associated with a mass extinction. The Chixculub

crater, estimated to have been created by the impact of a D ∼ 10 km object, is

associated with the terminal Cretaceous mass extinction event (Alvarez et al., 1980;

Hildebrand et al., 1991). Estimates from impact risk hazard assessments in the

literature suggest that Chixculub-sized impact events happen on Earth on the order

of once every 108 yr (Chapman and Morrison, 1994).

The impact cratering record of Venus is unique in the solar system. Over 98%

of the surface of Venus was mapped using synthetic aperture radar by the Magellan

spacecraft (Tanaka et al., 1997). The observed craters on Venus appear mostly

pristine and are randomly distributed across the planet’s surface, which has been

taken as evidence for a short-lived, global resurfacing event on the planet within the

last ∼ 1 Gy (Phillips et al., 1992; Strom et al., 1994). Venus has four craters with

Dc > 150 km; Mead crater with Dc = 270 km, Isabella crater with Dc = 175 km,

Meitner with Dc = 149 km, and Klenova with Dc = 141 km.4 Shoemaker et al.

(1991) estimated the surface age of Venus to be ∼ 200–500 My using the total

abundance of Venus craters and a flux of impactors based on the known abundance of

Venus-crossing asteroids and on models of their impact probabilities. More recently,

Korycansky and Zahnle (2005) used similar techniques (as well as an atmospheric

screening model for small impactors) and estimated the surface age of Venus to be

730 ± 220 My old. Phillips et al. (1992) used four methods to determine the age of

Venus’ surface, three which used models of observed Venus-crossing asteroids and

one that used the observed abundance of craters on the lunar mare as a calibration.

All four methods resulted in surface ages between 400-800 My.

Each of the techniques described above for estimating surface ages based on the

abundance of observed craters has its shortcomings. Calculating a surface age using

the observed population of NEAs makes the assumption that the current population

4From the USGS/University of Arizona Database of Venus Impact Craters at

http://astrogeology.usgs.gov/Projects/VenusImpactCraters/
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of NEAs is typical for the entire post-LHB history of the inner solar system, including

both the number of near earth asteroids and their computed impact probabilities.

Calculating the surface age based on the abundance of craters on the lunar mare

makes the assumption that the crater production rate in the inner solar system has

been approximately constant over the last ∼ 3.2 Gy, which is the age by when most

lunar mare were produced (BVSP, 1981).

Large impactors produce craters with a complex morphology. To determine the

sizes of impactors which created the largest post-LHB terrestrial impact craters, I

used Pi scaling relationships to estimate the transient crater diameter as a function

of projectile and target parameters; I then applied a second scaling relationship

between transient crater diameter and final crater diameter. The particular form

of Pi scaling used here is given by Collins et al. (2005) for impacts into competent

rock:

Dtc = 1.161

(

ρi

ρt

)1/3

D0.78v0.44
i g−.22 sin1/3 θ, (2.6)

where ρi and ρt are the densities of the impactor and target in kg m−3, D is the

impactor diameter in m, vi is the impactor velocity in m s−1, g is the acceleration

of gravity in m s−2 and θ is the impact angle. I used the relationship between final

crater diameter, Dc, and transient crater diameter, Dtc, given by McKinnon and

Schenk (1985):

Dc = 1.17
D1.13

tc

D0.13
∗

, (2.7)

where D∗ is the diameter at which the transition between simple and complex crater

morphology occurs. The transition diameter, D∗, is inversely proportional to the

surface gravity of the target (Melosh, 1989), and can be computed based on the

nominal value for the Moon of D∗,moon = 18 km.

Applying Eqs. (2.6) and (2.7) to the problem of terrestrial planet cratering by

asteroids requires some assumptions about both the impacting asteroids and the tar-

gets. For simplicity I assumed that target surfaces have a density ρt = 3 g cm−3 and

that impacts occur at the most probable impact angle of 45◦ (Gilbert, 1893). The

characteristic impact velocity is often chosen to be the rms impact velocity obtained
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from a Monte Carlo simulation of planetary projectiles (BVSP, 1981). However, us-

ing the rms impact velocity may lead to misleadingly high estimates of the impact

velocity because the impact velocity distributions are not Gaussian (Bottke et al.,

1994; Ito and Malhotra, 2009). Therefore the median velocity may be more appro-

priate estimate of a “typical” impact velocity (Chyba, 1990, 1991).

I made my own estimates of the impact velocities onto the planets using the

results of Sim 3. The small number of impacts computed in Sim 3 makes determining

impact velocity distributions difficult. I improved the statistics by using the far

more numerous close encounters between planets and test particles to calculate

mutual encounter velocities. For every close encounter in Sim 3 I recorded the

closest-approach distance and mutual velocity between particles and planets. I only

considered particles that had a closest-approach distance within the Hill sphere of

a planet. I estimated impact velocities using the vis viva integral given by:

1

2
v2

imp −
GMp

rp

=
1

2
v2

enc −
GMp

renc

, (2.8)

where vimp and rp are the estimated impact velocity and the radius of the planet,

and venc and renc are the mutual encounter velocity and closest approach distance.

Some particles encountered a planet multiple times, which skews the impact velocity

estimates, so I only considered unique encounters between a particular particle and

a planet. If a particle encountered a planet multiple times it was treated as a single

event and I only used the impact velocity of the first encounter. The median, mean,

and RMS impact velocities for each of the planets is shown in Table 2.3. The velocity

distributions are shown in Fig. 2.12.

Table 2.3: Estimated impact velocities for close encounter events in Sim 3
Planet Encounters Velocity (km s−1)

Median Mean RMS
Mercury 3885 38.1 40.5 43.3
Venus 6974 23.4 25.9 27.5
Earth 3522 18.9 20.3 21.1
Mars 1205 12.4 13.1 13.8
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Figure 2.12: Impact velocity distributions of asteroids on the terrestrial planets.
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Using the median impact velocities and my assumptions about asteroid density

(ρi = 1.5–3 g cm−3), I calculated the sizes of the impactors that produced the

largest post-LHB craters in the inner solar system, using Eqs. (2.6) and (2.7). The

“big three” terrestrial impact craters are consistent with asteroidal impactors of

diameter D ∼ 7–14 km. The estimated projectile size for Mead crater, the largest

impact crater on Venus, is D ∼ 12–16 km. Varying the assumptions used in the Pi

scaling, Mead and Isabella craters are fully consistent with an impact of a D > 10 km

asteroid, but Meitner and Klenova craters could be consistent with smaller asteroidal

impacts.

In summary, there are no known impact structures of ages . 3.8 Gy (post-LHB)

attributed to projectiles with D & 30 km. This is consistent with the theoretical

estimate above. The small number of observed large impacts are consistent with

the impact of D > 10 km objects. Earth has been impacted by at least 3 objects

that are consistent with D > 10 km asteroids. During the Phanerozoic eon (the

last 545 My), only one impact crater, Chixculub, has been discovered on Earth

that is consistent with a D > 10 km asteroid. Venus has been impacted by 2–4

D > 10 km objects in the last Gy, based on the number of observed large craters

and its estimated surface age.

2.5.4 Flux of D>10 km impactors on the terrestrial planets

In my discussion of the dynamical erosion of the main asteroid belt, I have confined

myself to D > 30 km primordial asteroids because non-gravitational and collisional

effects are negligible for this population. However, considering that the largest

craters on the terrestrial planets correspond to impactors D ∼ 10 km, somewhat

smaller than 30 km, I am motivated to consider the D & 10 km population of

the main belt. In the size range D = 10–30 km the effects of collisions and non-

gravitational forces are not negligible, but they do not dominate that of dynamical

chaos on the semimajor axis mobility of main belt asteroids. Therefore I extend my

dynamical calculations to D > 10 km asteroids and I compare the results with the

terrestrial planet impact crater record, with the caveat that my results are only a
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rough estimate of the actual impact flux.

In order to turn the asteroid loss rate into an impact flux for a given crater size,

the results of Sim 1, previously normalized to the abundance of H ≤ 10.8 asteroids

(Fig. 2.2), were scaled to the fainter asteroids (H < 13.2). Applying ρv = 0.09 for

the geometric albedo, H < 13.2 corresponds to D > 10 km. The size distribution

of the large asteroids of the main belt has not substantially changed over the last

∼ 4 Gy and is described well by the present size distribution (Bottke et al., 2005a;

Strom et al., 2005). I took the H ≤ 10.8 (D > 30 km) loss rate shown in Fig. 2.2

and scaled it to H < 13.2 (D > 10 km) assuming the asteroid cumulative size

distribution in this size range is a simple power law of the form:

N>D = kD−b. (2.9)

The debiased main belt asteroid size frequency distribution determined by Bottke

et al. (2005a) gives b = 2.3 in the size range 10 km < D < 30 km.

I used my estimate of the loss of D > 10 km asteroids from the main belt due

to dynamical diffusion, along with my estimate of the impact probabilities shown

in Table 2.2, to determine the impact flux of D > 10 km asteroids, Ṅ>10 km, on

the terrestrial planets. The impact flux is based on the four-component piecewise

decay law given by Eq. (2.5) with parameters given in Table 2.1, which gives the

fraction remaining as a function of time. First the derivative of Eq.(2.5) is taken,

yielding ḟ(t). In order to convert from a fraction rate, ḟ(t), to the flux of D > 10 km

impacts, Ṅ>10 km(t), I multiplied ḟ(t) by the coefficient, C>10 km, defined as:

C>10 km =
931

f(4 Gy)

(

10

30

)−2.3

pi (2.10)

The first component of the coefficient is the constant, 931/f(4 Gy), which normalizes

the fraction remaining such that the total number of asteroids remaining at t = 4 Gy

is 931; the latter is the total number of H < 10.8 (D > 30 km) asteroids in the

observational sample. The next component is (10/30)−2.3, which scales the results

to D > 10 km, as given by Eq. (2.9). Finally, the coefficient was multiplied by

the weighted probability pi that terrestrial planet-crossing asteroids impact a given
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planet. For the Earth, the impact probability is pEarth = 0.003 as given in Table 2.2.

By multiplying ḟ(t) by the coefficient C>10 km I obtained the flux of impacts by

D > 10 km asteroids on the Earth as a function of time, Ṅ>10 km. By further

multiplying by 1/23, using the ratio of 23:1 Earth:Moon impacts calculated by Ito

and Malhotra (2006), I also estimated the lunar flux. The results are shown in

Fig. 2.13a, showing my estimate of the impact flux of D > 10 km asteroids on the

Earth (left-hand axis) and Moon (right-hand axis) since 1 My after the establishment

of the current dynamical architecture of the main asteroid belt.

For comparison, I also plot in Fig. 2.13a the impact flux estimates obtained

by Neukum et al. (2001) from crater counting statistics. The shaded region of

Fig. 2.13a represent upper and lower bounds on the estimated post-LHB impact flux

using calibrated lunar cratering statistics (Neukum et al., 2001). The lower bound is

calculated using the number of Dc > 200 km lunar impact craters from the Neukum

Production Function (NPF, Fig. 2 of Neukum et al. (2001)); the rate is 7 × 10−9

craters km−2 Gy−1. The upper bound is calculated using the number of Dc > 140 km

lunar impact craters from the NPF; the rate is 2 × 10−8 craters km−2 Gy−1. These

rates were multiplied by the surface area of the Moon to obtain the number of

impacts on the lunar surface, and then multiplied by 23 to obtain the number of

impacts on the Earth’s surface.

I have also calculated the cumulative number of impacts on a surface with a

given age; the result is shown in Fig. 2.13b. The cumulative number of impacts

as a function of time is calculated simply as Ncumulative = C>10 km [f(t) − f(4 Gy)].

Assuming that t = 0 corresponds with an age of 4 Gy ago, the surface age is simply

SA = 4 Gy− t. The upper and lower bounds on the cumulative number of impacts

calculated from the NPF are shown as the shaded region, similar to Fig. 2.13a. My

calculations of the impact flux show that at early times the flux was larger than the

estimate given by the NPF, but that after t = 500 My the flux of impacts that I

calculate is lower than that given by the NPF. The present day flux of D > 10 km

impactors is currently about an order of magnitude lower than that given by the

NPF.
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I note that the dynamical erosion rate decays with time, and the impact rate

that I derive also decays as a function of time. My estimated impact flux for large

craters declines by a factor of 3 over the last 3 Gy, as shown in Fig. 2.13. This is in

some contrast with previous studies: in commonly used cratering chronologies, the

impact flux is usually assumed to have been relatively constant over time since the

end of the LHB. The results obtained for the Earth-Moon system shown in Fig. 2.13

can also be applied to the remaining terrestrial planets, using the weighted impact

probabilities, pi, given in Table 2.2. My estimated decay of the large impact rate

for Mars over the last 4 Gy agrees with the results of Quantin et al. (2007) that

suggest that the impact cratering rate of Dc > 1 km craters on Mars has declined

by a factor of 3 over the last 3 Gy, based on counts of craters on 56 landslides along

the walls of Valles Marineris. Reliable estimates are lacking for the absolute ages

of lunar surfaces with ages < 3 Gy, but what estimates do exist (i.e. estimated

ages of Copernicus, Tycho, North Ray, and Cone craters from the Apollo missions)

seem to be mostly consistent with a constant flux of impactors after 3 Gy ago,

but with a possible increase in the flux after 1 Gy ago (Stöffler and Ryder, 2001).

Also, estimates of the current impact flux from studies of the lunar record seem to

be consistent with estimates made by observing the modern NEO population and

estimating their impact probabilities (Morrison et al., 2002). However, Culler et al.

(2000) suggested that the lunar impact flux declined by a factor of 2 or 3 from

∼ 3.5 Gy ago until it reached a low at ∼ 600 My ago and then increased again,

based on dating of lunar impact glasses in soils. This hypothesis is consistent with

my result, that the overall impact flux onto the terrestrial planets has decreased by

a factor of 3 since ∼ 4 Gy ago due to the dynamical erosion of the asteroid belt. The

apparent increase in the flux at ∼ 600 My ago until the present may be the result

of a few large asteroid breakup events in the inner asteroid belt, such as the Flora

and Baptistina family-forming events, and therefore the modern NEO population

may not be representative of the NEO population over the last ∼ 4 Gy.

Assuming that t = 0 corresponds to an age of 4 Gy ago, I estimate that in the

last 3 Gy there have been ∼ 4 impacts of D > 10 km asteroids on the Earth due
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to dynamical erosion, and in the last 1 Gy there has been only 1 impact. This

is about an order of magnitude lower than estimates of the cratering rate of the

terrestrial planets using the lunar cratering record, which give ∼ 6–18 D > 10 km

impactors onto the Earth every 1 Gy using the NPF and assuming a D > 10 km

object produces a 150–200 km crater (Neukum et al., 2001; Chapman and Morrison,

1994). The discrepancy between my estimates of the production of large craters and

those based on the NPF may indicate that either (1) the current production rate

of large craters (Dc & 150 km) is substantially overestimated by the NPF, or (2)

the current production rate of large craters is not dominated by chaotic transport

of large main belt asteroids.

One possibility is that cratering at this size is dominated by comets, rather than

asteroids. The fraction of terrestrial planet impacts that are due to comets vs.

asteroids has long been controversial, but is generally thought that Jupiter-family

comets contribute fewer than 10% and Oort cloud comets contribute fewer than

1%. (Bottke et al., 2002b; Stokes et al., 2003). Even periodic comet showers may

not substantially increase the impact contribution from comets (Kaib and Quinn,

2009). Therefore it seems unlikely that comet impacts can account for an order of

magnitude more large impacts on the terrestrial planets than asteroids.

Another possibility is that large asteroid breakup events (followed by fragment

transport via the Yarkovsky effect to resonances) dominate the production of large

craters. My model neglects breakup events which have produced numerous D ∼
10 km fragments over the last 4 Gy, and breakup events near resonances with Earth-

impact probabilities higher than that of the intrinsic main belt may contribute to the

large basin impact rate. This is similar to the hypothesis proposed by Bottke et al.

(2007b) for the origin of the Chicxulub impactor from the Baptistina family-forming

event. The Baptistina breakup is hypothesized to have involved two large asteroids

(D1 ∼ 170 km and D2 ∼ 60 km) that collided at a semimajor axis distance <

0.01 AU from two overlapping weak resonances that, combined, increased fragment

eccentricities to planet-crossing orbits with a 1.7% Earth-impact probability (Bottke

et al., 2007b). It is unclear whether such fortuitous combinations of conditions occur
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often enough to dominate the production of large craters over the solar system’s

history since the end of the LHB. Large family forming breakup events do occur in

the asteroid belt, and they likely can increase the flux of impacts onto the terrestrial

planets (Nesvorný et al., 2002, 2006; Korochantseva et al., 2007). The Flora family

breakup event in particular was large and occurred in the inner asteroid belt roughly

0.5–1 Gy ago (Nesvorný et al., 2002). Also, while the Yarkovsky effect is very weak

for D > 10 km asteroids, it is not entirely negligible over the age of the solar system.

For instance, the loss rate of D = 10 km from the inner asteroid belt is somewhat

higher when the Yarkovsky effect is taken into account compared to when it is

not (Bottke et al., 2002a). It is doubtful whether this modest difference can account

for a factor of ten increase in the flux of D > 10 km objects in the terrestrial planet

region, however additional modeling may be needed to confirm this. In addition,

the weakness of the Yarkovsky effect on large asteroids can paradoxically enhance

their mobility in the inner main belt. Combinations of nonlinear secular resonances

and weak three-body resonances may case asteroids to slowly diffuse through the

middle and inner main belt (Carruba et al., 2005; Michtchenko et al., 2009). Only

large asteroids that are only weakly affected by the Yarkovsky effect can remain

inside these resonances long enough for them to act.

Finally, I consider the contribution from high velocity impactors with D < 10 km

to the large impact crater production rate. The velocity distributions of asteroid

impacts on the terrestrial planets have significant high velocity tails, as seen in

Fig. 2.12. Because size distributions of asteroids follow a power law with a nega-

tive index, as in Eq. (2.9), smaller objects are more numerous than larger ones. I

calculated the relative contribution of impacts by objects of varying sizes on the

production of craters of a given size. Using Eqs. (2.6) and (2.7), a D = 10 km

projectile striking the Earth at 19 km s−1 produces a crater with a final diameter

Dc = 187 km, assuming target and projectile densities are both 3 g cm−3, and the

impact occurs at a 45◦ angle. I solved for the projectile size needed to produce

a Dc = 187 km crater while varying the impact velocity. The result was used to

transform the Earth impact velocity distribution from Fig. 2.12 into a projectile
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diameter D > 10 km is unity.

size distribution for a fixed final crater diameter. Finally I multiplied the binned

projectile size distribution by a binned asteroid size distribution, using a cumulative

distribution as in Eq. (2.9) with an index b = 2.3. The result was then turned into

a cumulative distribution and normalized to N > 10 km, and is plotted in Fig. 2.14.

This plot shows that asteroids with D < 10 km that impact at high velocity in-

crease the production of large craters by no more than a factor of two. Therefore

D < 10 km asteroids impacting at high velocity cannot account for the order of

magnitude difference in the production rate of large impact craters on the Earth

between my model and the NPF.

On very ancient terrains, the discrepancy between total number of accumulated

craters estimated from my model compared with the constant-flux models used in

crater chronologies is less than with younger surfaces, as illustrated by Fig. 2.13b.

My model also cannot account for the LHB itself. Total accumulated craters on

ancient heavily cratered terrains associated with the LHB are at least 10–15 times



62

higher than on younger terrains (Stöffler and Ryder, 2001), and likely even more if

the surfaces reached equilibrium cratering. The impact flux during the LHB was at

least two orders of magnitude higher than the average flux over the last 3.5 Gy, and

possibly three orders of magnitude more if the LHB was a short-lived event (Ryder,

2002). Even with the more enhanced rate of impacts at early times, and assuming

higher Earth impact probabilities of 3% based on estimates from the ν6 resonance,

the impact flux due to dynamical erosion is roughly one or two orders of magnitude

lower than that needed to produce the heavily cratered terrains associated with the

LHB (Stöffler and Ryder, 2001; Neukum et al., 2001).

2.6 Conclusion

The main asteroid belt has unstable zones associated with strong orbital resonances

with Jupiter and Saturn and relatively stable zones elsewhere. In most of the

strongly unstable zones, the timescale for asteroid removal is . 1 Myr; one exception

is the 2:1 mean motion resonance with Jupiter where the timescale to empty this

resonance approaches a gigayear. The relatively stable zones also lose asteroids by

means of weak dynamical chaos on long timescales. I have found that the dynam-

ical loss of test particles from the main asteroid belt as a whole is best described

as a piecewise logarithmic decay. A piecewise logarithmic decay law implies that

the intrinsic loss rate from the asteroid belt decays inversely proportional to time,

ṅ ∝ t−1, but with different proportionality constants for different regions inside the

belt. When a region with a particular decay rate empties of asteroids, the decay

law for the entire asteroid belt undergoes a change in slope. This logarithmic loss of

asteroids due to dynamical chaos was established very soon after the current dynam-

ical architecture of the asteroid belt was established, and it continues to the present

day with very little deviation. Dynamical chaos is the predominant mechanism for

the loss of large asteroids, D & 10–30 km. I have calculated that the asteroid belt

1 My after the establishment of the current dynamical architecture of the solar sys-

tem had roughly twice its present number of large asteroids. Because their loss rate
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is inversely proportional to time, I estimate that the flux of large impactors has

declined by a factor of 3 over the last 3 Gy. I have calculated that large asteroidal

impactors originating across the main asteroid belt have an overall Earth impact

probability of 0.3%, and that the number of impacts of D > 10 km asteroids on

Earth is only ∼ 1. My result on the current impact flux of D > 10 km asteroids

due to dynamical erosion of the asteroid belt is an order of magnitude less than

the values adopted in the recent literature on crater chronology and impact hazard

assessment. I have evaluated several possible explanations for the discrepancy and

find them inadequate. My results can be used to improve studies of large impacts

on the terrestrial planets.
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CHAPTER 3

A RECORD OF PLANET MIGRATION IN THE ASTEROID BELT

Portions of the content of this chapter has been previously published in the journal

Nature as Minton and Malhotra (2009).

3.1 Introduction

The main asteroid belt lies between the orbits of Mars and Jupiter, but the region

is not uniformly filled with asteroids. There are gaps, known as the Kirkwood gaps,

in the asteroid distribution in distinct locations that are associated with orbital res-

onances with the giant planets (Kirkwood, 1867); asteroids placed in these locations

will follow chaotic orbits and be removed (Wisdom, 1987). Here I show that the

observed distribution of main belt asteroids does not fill uniformly even those re-

gions that are dynamically stable over the age of the solar system. I find a pattern

of excess depletion of asteroids, particularly just outward of the Kirkwood Gaps

associated with the 5:2, the 7:3, and the 2:1 jovian resonances. These features are

not accounted for by planetary perturbations in the current structure of the solar

system, but are consistent with dynamical ejection of asteroids by the sweeping of

gravitational resonances during the migration of Jupiter and Saturn ∼ 4 Gy ago.

The Kirkwood gaps have been explained by the perturbing effects of the giant

planets that cause dynamical chaos and orbital instabilities on very long timescales

in narrow zones in the main asteroid belt (Wisdom, 1987), but thus far it has not

been established how much of the main belt asteroid distribution is accounted for

by planetary perturbations alone. I compared the distribution of observed asteroids

against a model asteroid belt uniformly populated in the dynamically stable zones.

My model asteroid belt was constructed as follows. Test particle asteroids were

given eccentricity and inclination distribution similar to the observed main belt, but
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a uniform distribution in semimajor axis. I then performed a numerical integration

for 4 Gy of the test particles’ orbital evolution under the gravitational perturbations

of the planets using a parallelized implementation of a symplectic mapping (Wisdom

and Holman, 1991; Saha and Tremaine, 1992).

3.2 Asteroid belt model

I will use the model asteroid belt containing 5760 test particles integrated for 4 Gy

described in Chapter 2 (Sim 1). I sorted the surviving particles into semimajor

axis bins of width 0.03 AU. I compared the model asteroid belt with the observed

asteroid belt, as shown in Fig. 3.1a. I find that the observed asteroid belt is overall

more depleted than the model can account for, and there is a particular pattern in

the excess depletion: there is enhanced depletion just exterior to the major Kirk-

wood gaps associated with the 5:2, 7:3, and 2:1 mean motion resonances (MMRs)

with Jupiter (the regions spanning 2.81–3.11 AU and 3.34–3.47 AU in Fig. 3.1a);

the regions just interior to the 5:2 and the 2:1 resonances do not show significant

depletion (the regions spanning 2.72–2.81 AU and 3.11–3.23 AU in Fig. 3.1a), but

the inner belt region (spanning 2.21–2.72 AU) shows excess depletion.

The above conclusions about the patterns of depletion are based on my model

asteroid belt which assumes uniform initial population of the dynamically stable

zones. It is conceivable that the discrepancies between the model and the observa-

tions could be due to a non-uniform initial distribution of asteroids. However, the

particular features I find cannot be explained by appealing to the primordial distri-

bution of planetesimals in the solar nebula, nor to the effects of the mass depletion

that occurred during the planet formation era (see Supplementary Information). As

I show below, they can instead be readily accounted for by the effects of giant planet

migration in the early history of the solar system.

There is evidence in the outer solar system that the giant planets – Jupiter,

Saturn, Uranus and Neptune – did not form where we find them today. The orbit

of Pluto and other Kuiper Belt Objects (KBOs) that are trapped in mean motion
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Figure 3.1: Comparison of the observed main belt asteroid distribution with my
simulated asteroid belt and results of the migration simulation. a, The solid line
histogram is the distribution of asteroids remaining in my model asteroid belt at the
end of the 4 Gy simulation in which the asteroid belt region was initially uniformly
populated with test particles and the planets were in their current orbits. The
shaded histogram is my observational comparison sample. The model asteroid belt
(solid line) was normalized by multiplying all bins by a constant such that the
value of the most-populous model bin equaled that of its corresponding bin in the
observations. The current positions of the ν6 secular resonance and the strong jovian
mean motion resonances associated with the major Kirkwood gaps are shown. b,
The solid line is the initial distribution of test particles in the simulation with
migrating planets. The shaded histogram is the normalized distribution of test
particles remaining at the end of the 100 My migration simulation. The planet
migration history followed the form of Eq. 3.1. The grey-shading indicates regions
swept by the strong jovian mean motion resonances. c, Comparison of the model
asteroid belt subjected to planet migration and the observed asteroid belt. The
solid line is the distribution of observed large asteroids.The shaded histogram is
the distribution of test particles remaining at the end of the 100 My migration
simulation.
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resonances with Neptune can be explained by the outward migration of Neptune due

to interactions with a more massive primordial planetesimal disk in the outer regions

of the solar system (Malhotra, 1993, 1995). The exchange of angular momentum

between planetesimals and the four giant planets caused the orbital migration of

the giant planets until the outer planetesimal disk was depleted of most of its mass,

leaving the giant planets in their present orbits (Fernandez and Ip, 1984; Hahn

and Malhotra, 1999; Tsiganis et al., 2005). As Jupiter and Saturn migrated, the

locations of mean motion and secular resonances swept across the asteroid belt,

exciting asteroids into terrestrial planet-crossing orbits, thereby greatly depleting

the asteroid belt population and perhaps also causing a late heavy bombardment in

the inner solar system (Liou and Malhotra, 1997; Levison et al., 2001; Gomes et al.,

2005; Strom et al., 2005).

3.3 Simulation of planet migration and its effects on the asteroid belt

I performed a computer simulation to test the hypothesis that the patterns of as-

teroid depletion inferred from Fig. 3.1a are consistent with planet migration. I used

a total of 1819 surviving test particles from the previous 4 Gy simulation as initial

conditions for a simulation with migrating planets. For the purposes of this simula-

tion, I applied an external tangential force on each of the planets to simulate their

orbital migration, so that a planet’s semimajor evolved as follows (Malhotra, 1993):

a(t) = a0 + ∆a [1 − exp (−t/τ)] , (3.1)

where a0 is the initial semimajor axis, ∆a is the migration distance, and τ is a migra-

tion rate e-folding time. Jupiter, Saturn, Uranus, and Neptune had initial semimajor

axes displaced from their current values by ∆a = +0.2, −0.8, −3.0, and −7.0 AU,

respectively; these values are consistent with other estimates of Jupiter’s and Nep-

tune’s migration distances (Fernandez and Ip, 1984; Malhotra, 1995; Franklin et al.,

2004; Tsiganis et al., 2005), but Uranus’ and Saturn’s migration distances are less

certain. I used τ = 0.5 My, which is near the lower limit inferred from Kuiper belt
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studies (Murray-Clay and Chiang, 2005). After 100 My of evolution under the in-

fluence of migrating planets, the 687 surviving test particles in the simulation were

sorted and binned. The distribution of the survivors is shown in Fig. 3.1b.

In contrast with Fig. 3.1a, the asteroid belt distribution produced by the planet

migration model matches qualitatively quite well the distribution of the observed

asteroids (Fig. 3.1c). The depletion patterns in Fig. 3.1a may be attributed to a

number of plausible causes. Any mechanism invoked to explain the depletion must

account for the features seen in Fig. 3.1a, namely that there is enhanced depletion in

regions just outward of the major Kirkwood gaps. Here I explain why these features

cannot be accounted for by appealing to the primordial distribution of planetesimals

in the solar nebula, or to the effects of the first mass depletion event that occurred

during the planet formation era.

3.4 Discussion

First, I consider whether the depletion may be a reflection of the primordial mass

distribution of planetesimals in the solar nebula, which is related to the surface mass

density of the nebular disk, usually expressed as a decreasing function of heliocentric

distance, Σ ∝ r−p. The “minimum mass solar nebula” (MMSN) model, which is

derived by spreading out the masses of each planet in an annulus centered on its

presumed initial semimajor axis and then fitting a surface mass density function,

estimates that the index p ≈ 1.5 if the giant planets are assumed to have formed in

their initial locations, or p ≈ 2.2 if the giant planets are assumed to have formed in

a more compact configuration (Weidenschilling, 1977; Hayashi, 1981; Desch, 2007).

If mass is equally distributed among planetesimals of similar size in the asteroid

belt region, then the number distribution of planetesimals is N ∝ r−p+1. Fig. 3.1a

indicates that in the region between the inner edge of the asteroid belt and the 5:2

resonance, the number distribution of asteroids within the dynamically stable regions

is an increasing function of heliocentric distance; neglecting the enhanced depletion

adjacent to the Kirkwood gaps (the shaded regions in Fig. 3.1b), the overall depletion
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is approximately linear with r in the region from 2.25 AU to 2.8 AU, implying that

N ∝ r. Therefore a nebular surface mass density in accord with the MMSN model

is inconsistent with that required to produce the observed asteroid distribution, and

furthermore cannot account for the enhanced depletion adjacent to the Kirkwood

gaps.

Second, I consider whether the asteroid distribution may have been produced

during the planet formation era, due to either secular resonance sweeping related

to the depletion of the solar nebula (Heppenheimer, 1980), or by gravitational per-

turbations from embedded planetary embryos in the asteroid belt region (Wetherill,

1992). The sweeping secular resonance model may account for depletion in the in-

ner asteroid belt seen in Fig. 3.1a if the rate of sweeping was an increasing function

of semimajor axis. In the embedded planetary embryo model, the depletion in the

inner asteroid belt could be accounted for if the scattering process was more efficient

near the inner edge with decreasing efficiency outward. Thus the overall depletion

trend does not contradict either model. However, neither model can readily account

for the observed enhanced depletion adjacent to the Kirkwood gaps.

Of note is that the inner asteroid belt region (2.15–2.81 AU) is somewhat more

depleted in the migration simulation than in the observations. The majority of de-

pletion from this region found in my migration simulation is due to the sweeping ν6

secular resonance. This powerful resonance removes asteroids from the main belt

by secularly increasing their eccentricities to planet-crossing values (Murray and

Dermott, 1999). The maximum eccentricity of an asteroid disturbed by the passage

of the ν6, and thereby the degree of asteroid depletion, is related to the sweeping

speed: the slower the sweeping the more the depletion (Heppenheimer, 1980). The

distances the planets migrate determine the ranges in asteroids’ semimajor axes

that are affected by the sweeping. As I will show in Chapter 4, in my simulation,

as Jupiter and Saturn migrated, the ν6 secular resonance swept inward across the

entire main asteroid belt to its present location at ∼ 2.1 AU, as shown in Fig. 4.3.

But because the ν6 resonance location is such a steep function of Saturn’s semimajor

axis (see Fig. 4.3), for even modest proposed values of Saturn’s migration distance,
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all of the asteroid belt is affected by the passage of this resonance. Thus, the overall

level of depletion of the asteroid belt is most strongly dependant on the speed of

planet migration, and only secondarily on the migration distance. Because I used

an exponentially decaying migration rate for the giant planets, the ν6 resonance

sweeping rate decreased as it approached its current location, thereby causing rel-

atively greater asteroid depletion in the inner belt. Thus, the small but noticeable

differences between the model and the observations in Fig. 3.1c are sensitive to the

details of the time history of the planet migration speed.

I note that my model asteroid belt lost 62% of its initial pre-migration popula-

tion, but the actual asteroid belt may have lost as much as ∼ 90–95% of asteroids

due to migration (O’Brien et al., 2007). Because the overall level of asteroid deple-

tion is particularly sensitive to the speed of planet migration, detailed exploration of

parameters of the planet migration model and comparison with observations of main

belt asteroids may provide strong quantitative constraints on planet migration.
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CHAPTER 4

THE LOCATION OF THE ν6 RESONANCE DURING PLANET MIGRATION

4.1 Introduction

Secular resonances play an important role in the evolution of the main asteroid belt.

Williams (1971) first noted that the main asteroid belt seemed to be depleted at

a < 2.5, which was near the secular resonance where g − g6, where g is the rate

of precession of the longitude of pericenter, ̟, of the asteroid and g6 is the sixth

eigenfrequency of the solar system (corresponding roughly to the rate of precession

of Saturn’s longitude of pericenter). The secular resonance involving g0 − g6 = 0

(where g0 is the frequency of precession of the asteroid and g6 is the sixth funda-

mental eigenmode of the solar system), also called the ν6 resonance, is an important

resonance for the delivery of NEAs to the inner solar system Scholl and Froeschle

(1991). Williams and Faulkner (1981) showed that the location of the ν6 resonance

actually form surfaces in a−e− sin i space, and Milani and Knezevic (1990) showed

that those surfaces seem to correspond to the ”inner edge” of the main asteroid

belt. The location of the ν6 resonance is defined as the location where the rate of

precession of a massless particle (or asteroid) is equal to the g6 eigenfrequency of

the solar system (Murray and Dermott, 1999).

There is evidence that the solar system was not always in the configuration that

we find it today. At some point within the first ∼ 700 My of solar system his-

tory, the giant planets (Jupiter, Saturn, Uranus, and eptune) may have experienced

planetesimal-driven migration (Fernandez and Ip, 1984). Evidence for migration

of the outer giant planets comes from observations of the structure of the Kuiper

belt, an icy belt of planetesimals beyond Neptune (Malhotra, 1993, 1995; Hahn and

Malhotra, 1999; Levison et al., 2008). The giant planet migration may also have

affected the main asteroid belt as both mean motion and secular resonances would
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have swept through the asteroid belt region and removed asteroids by exciting them

into planet-crossing orbits, while also capturing asteroids into the stable 3:2 reso-

nance (Liou and Malhotra, 1997; Franklin et al., 2004; Minton and Malhotra, 2009).

The disruption of the asteroid belt through resonance sweeping has been implicated

in the so-called “Late Heavy Bombardment,” also known as the “Late Lunar Cat-

aclysm,” that is thought to have occurred ∼ 3.9 Gy ago (Tera et al., 1974; Ryder,

2002; Chapman et al., 2007; Strom et al., 2005; Gomes et al., 2005).

Constraints on the timing and duration of the planet migration from observations

may help to constrain models of our early solar system’s history. An example of

such a constraint from orbital dynamnics is in the distribution of the population of

Kuiper Belt Objects that are trapped in the 2:1 resonance with Neptune. Objects

in the 2:1 resonance with Neptune can librate about one of two centers, and the

speed of migration determines whether or not the libration centers are populated

equally; faster migration timescales result in asymmetries in the capture probabil-

ities between the two libration centers (Murray-Clay and Chiang, 2005). In the

main asteroid belt, an important mechanism for depleting asteroids during planet

migration is the sweeping of the ν6 secular resonance. In most migration models,

Saturn is thought to have originally resided closer to the Sun than currently, and

then experienced outward migration Fernandez and Ip (1984); Hahn and Malhotra

(1999); Tsiganis et al. (2005). During outward migration, the location of the ν6

resonance would have swept inwards, passing through the asteroid belt to finally

reside in its current location at ∼ 2.1 AU (for an asteroid with i ≈ 0) (Minton and

Malhotra, 2009). As the timescale for exciting an asteroid in the ν6 resonance to

planet-crossing values is ∼ 1 My (Williams and Faulkner, 1981), the fact that many

asteroids apparently survived the sweeping of the ν6 places some constraints on the

timescale of planet migration.

Understanding how to calculate these migration timescale constraints requires

an understanding of how the location of the ν6 resonance varies with the positions

of the giant planets. The ν6 resonance is most sensitive to the semimajor axis of

Saturn, as the g6 frequency is approximately the precession rate of Saturn’s longi-
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tude of perihelion (Malhotra, 1998). While Minton and Malhotra (2009) estimated

the position of the zero-inclination location of the ν6 as a function of Saturn’s semi-

major axis (see their Fig. 2), their method was limited and the results are only an

approximation. Here I produce a more accurate model of how the zero-inclination

location of the ν6 resonance changes as a function of Jupiter and Saturn’s semimajor

axis under reasonable scenarios of planet migration.

4.2 Spectral analysis of orbital evolution

The secular variations of planet orbital elements can be modeled as a linear com-

bination of periodic terms. In this work I consider a planar solar system consisting

of Jupiter and Saturn only. In this model, the secular variation in eccentricity of

planet j is given by:

{hj, kj} =
∑

i

E
(i)
j {cos(git + βi), sin(git + βi)}, (4.1)

where gi are the eigenfrquencies of the system and E
(i)
j are the corresponding eigen-

vectors. The solution for a co-planar two-planet solar system has two modes with

frequencies designated g5 and g6, using the nomenclature of Murray and Dermott

(1999). Such a solution places the location of the ν6 at ∼ 1.8 AU, a difference of

∼ 0.3 AU from the actual value of 2.1 AU. This difference is due to the proximity

of Jupiter and Saturn to the 5:2 mean motion resonance, which alters value of the

g6 eigenfrequency and introduces additional frequencies, such as g10 = 2g6 − g5.

I calculate values for the eccentricity-pericenter eigenfrequencies by direct numer-

ical integration of the two-planet, planar solar system. A Fourier transform of the

time history of the {hj, kj} vector yields the fundamental frequencies. For regular

(non-chaotic) orbits, the spectral frequencies are well defined and correspond to the

eigenfrequencies of the secular solution. For chaotic orbits, the spectral frequencies

the power spectrum does not have peaks at discrete frequencies. Michtchenko and

Ferraz-Mello (2001) used spectral analysis of long-term numerical integrations to

show that modest displacements in the giant planets’ semimajor axes and eccentric-

ities could lead to chaotic orbital evolution and exhibit broadband power spectra. A
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striking feature of our solar system noted by Michtchenko and Ferraz-Mello is that

the particular combination of semimajor axis and eccentricity combinations of each

of the four giant planets seem to lie in regions of regular orbits but very near regions

of chaos. However, even systems whose power spectra is strongly peaked at small

numbers of discrete frequencies can exhibit weakly chaotic behavior. Hayes (2008)

showed that changes in the initial conditions of the giant planets as small as one part

in 107 could lead to either chaotic or regular orbits in numerical integrations, but

much larger changes in the positions of the planets were needed by Michtchenko and

Ferraz-Mello to change from the strongly peaked spectra to the “noisy” broadband

spectra of strongly chaotic orbital evolution.

Here I use the spectral analysis of long-term integrations of the giant planets

to investigate the secular properties of the solar system during the period of giant

planet migration. I performed 255 numerical simulations of the Jupiter-Saturn pair

for ∼ 104 My each with a stepsize of 0.1 yr, varying Saturn’s semimajor axis between

7.4–10.5 AU while keeping Jupiter fixed at 5.2 AU. Jupiter and Saturn’s inclinations

were set to zero, but their initial eccentricities their modern values of ∼ 0.05. The

initial longitude of pericenter and mean anomalies of Jupiter were ̟jup,i = 15◦ and

λjup,i = 92◦, and Saturn were ̟sat,i = 338◦ and λsat,i = 62.5◦. After each simulation,

I Fourier-decomposed the resultant {h, k} vector time series as in Eq. (4.1) to obtain

the e–̟ power spectrum. I then identify the frequencies that are the equivalents to

the g5 and g6 modes of the solar system. Fig. 4.1 shows examples of some of the

spectra obtained over a frequency range of 1–1000′′ yr−1. Each panel in Fig. 4.1 is

labeled with the mean semimajor axis of Saturn, and the panels are given in order

from largest to smallest semimajor axis. The vertical scale in the spectrum plots is

arbitrary, and each spectrum is scaled to accommodate the highest amplitude peaks.

Table 4.1 lists the initial semimajor axis of Saturn along with the mean value of the

semimajor axes of Saturn and Jupiter, and the corresponding g5 and g6 frequencies

obtained using the fourier spectra.
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Figure 4.1: Example power spectra of Saturn’s e{sin ̟, cos ̟} time history. In each
example above, Jupiter’s initial semimajor axis was fixed at 5.2 AU and Saturn’s
semimajor axis was varied.
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Table 4.1: Secular frequencies g5 and g6 for a migrating

Saturn, with Jupiter fixed.

asat,0 (AU) ājup (AU) āsat (AU) g5 (′′ yr−1) g6 (′′ yr−1)

7.3378125 5.1978202 7.3847125 9.838 277.846

7.3500000 5.1981709 7.3946264 9.764 244.968

7.3656250 5.1985757 7.4076312 9.660 216.829

7.3900000 5.1990948 7.4286564 9.512 191.714

7.3934375 5.1991490 7.4317479 9.492 189.400

7.4000000 5.1992501 7.4376662 9.467 185.592

7.4028125 5.1992927 7.4402074 9.443 184.180

7.4156250 5.1995062 7.4516457 9.413 179.967

7.4212500 5.1994083 7.4579498 9.364 179.048

7.4284375 5.1993523 7.4655983 9.354 177.100

7.4412500 5.1994832 7.4775951 9.314 174.638

7.4490625 5.1995175 7.4852227 9.304 174.539

7.4500000 5.1995201 7.4861483 9.307 174.592

7.4540625 5.1995286 7.4901790 9.304 174.954

7.4668750 5.1994905 7.5033422 9.314 178.632

7.4768750 5.1993828 7.5141663 9.354 186.236

7.4796875 5.1993211 7.5174250 9.383 190.033

7.4925000 5.1792882 7.6748349 9.265 176.022

7.5000000 5.1879766 7.6195811 9.270 210.645

7.5046875 5.1838290 7.6546179 9.314 232.234

7.5053125 5.1824265 7.6652988 9.146 180.837

7.5181250 5.1867414 7.6472764 9.423 205.873

7.5309375 5.1929223 7.6155142 9.423 175.795

7.5325000 5.1864155 7.6644183 9.552 208.998

7.5437500 5.1957835 7.6079225 8.424 185.139

Continued on next page
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Table 4.1 – continued from previous page

asat,0 (AU) ājup (AU) āsat (AU) g5 (′′ yr−1) g6 (′′ yr−1)

7.5500000 5.1851589 7.6918132 9.134 160.082

7.5565625 5.1971782 7.6110798 9.136 162.070

7.5603125 5.2013665 7.5840692 9.522 155.584

7.5693750 5.2009146 7.5963695 9.126 138.093

7.5821875 5.2007172 7.6106445 8.978 132.012

7.5881250 5.2006625 7.6169995 8.948 130.756

7.5950000 5.2006216 7.6241986 8.929 129.737

7.6000000 5.2005918 7.6294364 8.911 129.195

7.6078125 5.2005446 7.6376252 8.909 128.600

7.6159375 5.2008019 7.6439443 8.889 127.394

7.6206250 5.2005279 7.6506215 8.909 127.730

7.6334375 5.2004708 7.6639086 8.929 127.335

7.6437500 5.2004230 7.6746214 8.958 127.463

7.6462500 5.2004090 7.6772360 8.978 127.612

7.6500000 5.2003824 7.6811992 8.998 128.009

7.6590625 5.2002492 7.6912807 9.136 131.577

7.6715625 5.1999095 7.7063670 8.770 128.937

7.6718750 5.1999325 7.7064960 7.841 97.810

7.6846875 5.2013650 7.7088438 8.840 102.793

7.6975000 5.2004818 7.7282200 9.047 123.014

7.6993750 5.2004667 7.7302161 9.037 122.757

7.7000000 5.2004622 7.7308773 9.035 122.682

7.7103125 5.2004064 7.7416562 9.047 121.926

7.7231250 5.2003602 7.7548802 9.097 121.422

7.7271875 5.2003835 7.7587937 9.107 121.244

7.7359375 5.2003197 7.7680604 9.156 121.086

7.7487500 5.2002869 7.7811927 9.225 120.888

Continued on next page
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Table 4.1 – continued from previous page

asat,0 (AU) ājup (AU) āsat (AU) g5 (′′ yr−1) g6 (′′ yr−1)

7.7500000 5.2002847 7.7824679 9.233 120.890

7.7550000 5.2002780 7.7875460 9.265 120.898

7.7615625 5.2002851 7.7940925 9.324 121.293

7.7743750 5.2001144 7.8082650 9.413 121.046

7.7828125 5.2001071 7.8168097 9.443 120.700

7.7871875 5.2000966 7.8212914 9.472 120.690

7.8000000 5.2000542 7.8345055 9.579 120.852

7.8106250 5.2000120 7.8455192 9.680 121.105

7.8384375 5.1998802 7.8745259 9.997 122.381

7.8500000 5.1998185 7.8866447 10.147 123.201

7.8662500 5.1997208 7.9037676 10.392 124.724

7.8940625 5.1995214 7.9333474 10.916 128.670

7.9000000 5.1994724 7.9397170 11.050 129.788

7.9218750 5.1992673 7.9633938 11.598 135.047

7.9496875 5.1989285 7.9941695 12.498 145.538

7.9500000 5.1989252 7.9945432 12.520 145.695

7.9775000 5.1984446 8.0261765 13.744 163.999

8.0000000 5.1978399 8.0538974 15.141 192.118

8.0053125 5.1976452 8.0608907 15.544 202.314

8.0081250 5.1975286 8.0647073 15.771 208.622

8.0162500 5.1971242 8.0763196 16.522 232.046

8.0243750 5.1965381 8.0894873 17.452 269.254

8.0325000 5.1954451 8.1070201 18.836 348.237

8.0331250 5.1953001 8.1088763 19.004 359.490

8.0406250 5.1800061 8.2452308 14.337 —

8.0487500 5.1809703 8.2449174 20.280 —

8.0500000 5.1814947 8.2415551 35.336 —

Continued on next page
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Table 4.1 – continued from previous page

asat,0 (AU) ājup (AU) āsat (AU) g5 (′′ yr−1) g6 (′′ yr−1)

8.0568750 5.1822251 8.2422541 37.396 —

8.0609375 5.1826513 8.2427116 37.742 —

8.0650000 5.1830748 8.2431856 37.405 —

8.0731250 5.1830784 8.2513205 24.067 —

8.0812500 5.1834888 8.2558731 27.112 —

8.0887500 5.1837568 8.2609557 29.485 —

8.0893750 5.1837194 8.2619802 29.258 —

8.0975000 5.1856789 8.2534225 26.499 —

8.1000000 5.1858706 8.2542577 27.278 —

8.1056250 5.1863328 8.2558951 28.744 —

8.1137500 5.1870268 8.2580485 31.166 —

8.1165625 5.1872760 8.2587159 32.333 —

8.1218750 5.1852281 8.2814409 27.429 —

8.1300000 5.1863833 8.2797257 22.603 —

8.1381250 5.1877928 8.2759569 — —

8.1443750 5.1885999 8.2754593 — —

8.1462500 5.1888193 8.2755221 — —

8.1500000 5.1894846 8.2736543 — —

8.1543750 5.1900137 8.2735927 — —

8.1625000 5.1910679 8.2728818 — —

8.1706250 5.1919233 8.2739240 — —

8.1721875 5.1921294 8.2737254 — —

8.1787500 5.1929074 8.2738021 — —

8.1868750 5.1937412 8.2749924 — —

8.2000000 5.1951943 8.2759751 — —

8.2500000 5.2002363 8.2838192 — —

8.3000000 5.2048105 8.2952833 — —

Continued on next page
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Table 4.1 – continued from previous page

asat,0 (AU) ājup (AU) āsat (AU) g5 (′′ yr−1) g6 (′′ yr−1)

8.3190625 5.2061221 8.3033413 — —

8.3281250 5.2073221 8.3020797 — —

8.3371875 5.2077003 8.3080275 — —

8.3462500 5.2080905 8.3139110 — —

8.3500000 5.2082785 8.3161005 26.066 —

8.3525000 5.2084737 8.3169855 26.568 907.687

8.3550000 5.2085880 8.3185682 32.471 893.024

8.3553125 5.2085384 8.3192391 24.512 614.752

8.3575000 5.2086416 8.3206149 29.881 886.755

8.3600000 5.2088690 8.3212616 27.735 589.005

8.3625000 5.2071796 8.3379462 24.532 319.148

8.3643750 5.2073070 8.3387764 23.305 320.206

8.3650000 5.2091419 8.3239903 24.680 373.461

8.3675000 5.2071529 8.3432345 21.486 294.132

8.3734375 5.2069631 8.3508116 18.896 257.715

8.3825000 5.2066152 8.3628696 16.987 211.410

8.3915625 5.2062721 8.3748701 15.989 176.774

8.4000000 5.2059766 8.3858374 15.338 152.530

8.4006250 5.2059559 8.3866401 15.296 150.976

8.4096875 5.2056752 8.3981003 14.733 131.626

8.4187500 5.2054288 8.4092740 14.229 116.834

8.4278125 5.2052127 8.4201885 13.754 105.305

8.4368750 5.2050224 8.4308839 13.319 96.139

8.4459375 5.2048534 8.4413993 12.904 88.733

8.4500000 5.2047839 8.4460599 12.730 85.875

8.4550000 5.2047029 8.4517588 12.518 82.662

8.4640625 5.2045675 8.4619898 12.142 77.609

Continued on next page
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Table 4.1 – continued from previous page

asat,0 (AU) ājup (AU) āsat (AU) g5 (′′ yr−1) g6 (′′ yr−1)

8.4731250 5.2044450 8.4721115 11.796 73.357

8.4821875 5.2043334 8.4821409 11.460 69.738

8.4912500 5.2042315 8.4920890 11.144 66.634

8.5000000 5.2041413 8.5016247 10.852 64.035

8.5003125 5.2041381 8.5019659 10.847 63.944

8.5093750 5.2040520 8.5117789 10.560 61.601

8.5184375 5.2039723 8.5215393 10.293 59.544

8.5275000 5.2038983 8.5312512 10.036 57.715

8.5365625 5.2038294 8.5409194 9.789 56.093

8.5456250 5.2037651 8.5505505 9.561 54.630

8.5500000 5.2037355 8.5551874 9.455 53.987

8.5546875 5.2037048 8.5601440 9.344 53.315

8.5637500 5.2036483 8.5697109 9.146 52.128

8.5728125 5.2035948 8.5792497 8.948 51.051

8.5818750 5.2035449 8.5887587 8.761 50.052

8.5909375 5.2034975 8.5982455 8.592 49.142

8.6000000 5.2034527 8.6077111 8.424 48.302

8.6500000 5.2032424 8.6596227 7.651 44.594

8.7000000 5.2030801 8.7111276 7.045 41.899

8.7500000 5.2029503 8.7623590 6.575 39.786

8.8000000 5.2028797 8.8130503 6.180 37.907

8.8500000 5.2027567 8.8642631 5.883 36.486

8.9000000 5.2026842 8.9150081 5.611 35.138

8.9500000 5.2026066 8.9658181 5.389 33.890

9.0000000 5.2025558 9.0163764 5.191 32.753

9.0500000 5.2025080 9.0669157 5.018 31.727

9.1000000 5.2024685 9.1173807 4.870 30.837

Continued on next page
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Table 4.1 – continued from previous page

asat,0 (AU) ājup (AU) āsat (AU) g5 (′′ yr−1) g6 (′′ yr−1)

9.1125000 5.2024614 9.1299698 4.835 30.692

9.1250000 5.2024571 9.1425292 4.815 30.702

9.1375000 5.2024409 9.1552144 4.865 31.947

9.1500000 5.2026839 9.1652212 4.783 30.405

9.1625000 5.2023813 9.1808669 4.687 29.644

9.1750000 5.2023811 9.1933868 4.637 29.258

9.1875000 5.2023768 9.2059505 4.608 29.021

9.2000000 5.2023705 9.2185351 4.585 28.810

9.2500000 5.2023401 9.2689323 4.462 28.019

9.3000000 5.2023082 9.3193532 4.351 27.290

9.3500000 5.2022756 9.3697889 4.252 26.623

9.4000000 5.2022401 9.4202636 4.165 26.054

9.4046875 5.2022365 9.4249992 4.153 26.005

9.4093750 5.2022327 9.4297361 4.153 25.968

9.4140625 5.2022290 9.4344735 4.140 25.918

9.4187500 5.2022251 9.4392123 4.140 25.881

9.4234375 5.2022211 9.4439527 4.128 25.844

9.4281250 5.2022170 9.4486941 4.116 25.807

9.4328125 5.2022127 9.4534371 4.116 25.782

9.4375000 5.2022083 9.4581819 4.103 25.745

9.4421875 5.2022038 9.4629285 4.103 25.720

9.4468750 5.2021990 9.4676774 4.091 25.696

9.4500000 5.2021957 9.4708452 4.091 25.683

9.4515625 5.2021941 9.4724288 4.091 25.683

9.4562500 5.2021888 9.4771826 4.079 25.671

9.4609375 5.2021833 9.4819404 4.066 25.659

9.4656250 5.2021773 9.4867347 4.066 25.659

Continued on next page
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Table 4.1 – continued from previous page

asat,0 (AU) ājup (AU) āsat (AU) g5 (′′ yr−1) g6 (′′ yr−1)

9.4703125 5.2021713 9.4914644 4.066 25.671

9.4750000 5.2021647 9.4962356 4.054 25.683

9.4796875 5.2021576 9.5010123 4.054 25.708

9.4843750 5.2021499 9.5057956 4.042 25.745

9.4890625 5.2021414 9.5105869 4.042 25.795

9.4937500 5.2021321 9.5153884 4.042 25.869

9.4984375 5.2021218 9.5202016 4.029 25.955

9.5000000 5.2021180 9.5218089 4.029 25.992

9.5031250 5.2021101 9.5250290 4.029 26.079

9.5078125 5.2020968 9.5298757 4.029 26.227

9.5125000 5.2020813 9.5347465 4.029 26.425

9.5171875 5.2020631 9.5396493 4.029 26.697

9.5218750 5.2020409 9.5445962 4.029 27.055

9.5265625 5.2020133 9.5496056 4.042 27.537

9.5312500 5.2019772 9.5547105 4.054 28.242

9.5359375 5.2019270 9.5599748 4.066 29.305

9.5406250 5.2018492 9.5655524 4.091 31.146

9.5453125 5.2016924 9.5720250 4.153 35.373

9.5500000 5.2002731 9.5928086 4.153 36.251

9.5546875 5.2006251 9.5935278 5.426 —

9.5593750 5.2009735 9.5942701 3.967 —

9.5640625 5.2013193 9.5950439 4.548 —

9.5687500 5.2015762 9.5968308 4.153 —

9.5734375 5.2019044 9.5978075 4.252 —

9.5781250 5.2022616 9.5984534 4.264 —

9.5828125 5.2026565 9.5986711 4.178 —

9.5875000 5.2031047 9.5982851 4.005 —

Continued on next page
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Table 4.1 – continued from previous page

asat,0 (AU) ājup (AU) āsat (AU) g5 (′′ yr−1) g6 (′′ yr−1)

9.5921875 5.2034748 9.5987863 3.930 —

9.5968750 5.2027443 9.6117609 4.029 25.733

9.6000000 5.2026335 9.6161483 3.943 23.978

9.6015625 5.2025969 9.6181287 3.918 23.483

9.6062500 5.2025210 9.6236858 3.856 22.593

9.6109375 5.2024720 9.6289377 3.819 22.124

9.6156250 5.2024369 9.6340321 3.794 21.852

9.6203125 5.2024101 9.6390322 3.782 21.691

9.6250000 5.2023888 9.6439707 3.770 21.568

9.6296875 5.2023712 9.6488661 3.757 21.481

9.6343750 5.2023565 9.6537303 3.745 21.419

9.6390625 5.2023438 9.6585707 3.745 21.370

9.6437500 5.2023327 9.6633930 3.733 21.320

9.6484375 5.2023229 9.6682006 3.720 21.283

9.6500000 5.2023199 9.6698004 3.720 21.271

9.6531250 5.2023142 9.6729965 3.720 21.246

9.6578125 5.2023063 9.6777828 3.708 21.209

9.6625000 5.2022991 9.6825611 3.708 21.172

9.6671875 5.2022926 9.6873325 3.696 21.135

9.6718750 5.2022865 9.6920982 3.696 21.098

9.6765625 5.2022809 9.6968589 3.683 21.061

9.6812500 5.2022756 9.7016154 3.683 21.036

9.6859375 5.2022707 9.7063681 3.671 20.999

9.6906250 5.2022661 9.7111175 3.671 20.962

9.6953125 5.2022617 9.7158641 3.658 20.925

9.7000000 5.2022576 9.7206080 3.658 20.888

9.7500000 5.2022231 9.7711041 3.597 20.468

Continued on next page
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Table 4.1 – continued from previous page

asat,0 (AU) ājup (AU) āsat (AU) g5 (′′ yr−1) g6 (′′ yr−1)

9.8000000 5.2021982 9.8214942 3.535 20.035

9.8500000 5.2021780 9.8718345 3.473 19.590

9.9000000 5.2021605 9.9221474 3.424 19.145

9.9500000 5.2021445 9.9724467 3.362 18.712

10.0000000 5.2021381 10.0226309 3.312 18.317

10.0500000 5.2021179 10.0729896 3.263 17.884

10.1000000 5.2021046 10.1232661 3.226 17.501

10.1500000 5.2020919 10.1735395 3.176 17.130

10.2000000 5.2020672 10.2239703 3.139 16.772

10.2500000 5.2020666 10.2740944 3.102 16.451

10.3000000 5.2020536 10.3243825 3.078 16.154

10.3500000 5.2020398 10.3746846 3.053 15.870

10.4000000 5.2020247 10.4250077 3.028 15.635

10.4500000 5.2020075 10.4753634 3.028 15.450

Table 4.2: Secular frequencies g5 and g6 for a migrating

Jupiter and Saturn.

ajup,0 (AU) asat,0 (AU) ājup (AU) āsat (AU) g5 (′′ yr−1) g6 (′′ yr−1)

5.2019111 9.5331445 5.2019591 9.5568133 4.054 28.613

5.2050857 9.5204461 5.2052481 9.5428001 4.029 26.511

5.2082603 9.5077476 5.2084764 9.5294747 4.029 25.856

5.2114349 9.4950492 5.2116850 9.5163769 4.042 25.622

5.2146095 9.4823508 5.2148844 9.5033796 4.054 25.572

5.2177841 9.4696524 5.2180790 9.4904393 4.079 25.609

Continued on next page
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Table 4.2 – continued from previous page

ajup,0 (AU) asat,0 (AU) ājup (AU) āsat (AU) g5 (′′ yr−1) g6 (′′ yr−1)

5.2209587 9.4569540 5.2212707 9.4775329 4.103 25.708

5.2241333 9.4442556 5.2244605 9.4646478 4.128 25.844

5.2273079 9.4315572 5.2276492 9.4517772 4.165 26.005

5.2304825 9.4188588 5.2308371 9.4389161 4.190 26.190

5.2336571 9.4061603 5.2340244 9.4260618 4.215 26.388

5.2368317 9.3934619 5.2372115 9.4132122 4.252 26.598

5.2400063 9.3807635 5.2403981 9.4003678 4.289 26.820

5.2431809 9.3680651 5.2435849 9.3875231 4.314 27.043

5.2463555 9.3553667 5.2467715 9.3746809 4.351 27.278

5.2495301 9.3426683 5.2499580 9.3618403 4.388 27.525

5.2527047 9.3299699 5.2531445 9.3490016 4.425 27.772

5.2558793 9.3172715 5.2563308 9.3361662 4.462 28.032

5.2590539 9.3045730 5.2595165 9.3233375 4.499 28.291

5.2622285 9.2918746 5.2627006 9.3105261 4.536 28.563

5.2654031 9.2791762 5.2658797 9.2977685 4.585 28.922

5.2685777 9.2664778 5.2692937 9.2825854 4.585 30.541

5.2717523 9.2537794 5.2723044 9.2715673 4.721 30.306

5.2749269 9.2410810 5.2754847 9.2588005 4.734 30.059

5.2781015 9.2283826 5.2786704 9.2459780 4.771 30.244

5.2812762 9.2156842 5.2818589 9.2331288 4.820 30.516

5.2844508 9.2029857 5.2850490 9.2202645 4.870 30.813

5.2876254 9.1902873 5.2882401 9.2073906 4.919 31.122

5.2908000 9.1775889 5.2914314 9.1945169 4.981 31.455

5.2939746 9.1648905 5.2946250 9.1816200 5.030 31.789

5.2971492 9.1521921 5.2978187 9.1687252 5.092 32.135

5.3003238 9.1394937 5.3010127 9.1558280 5.154 32.506

5.3034984 9.1267953 5.3042058 9.1429414 5.228 32.877

Continued on next page
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ajup,0 (AU) asat,0 (AU) ājup (AU) āsat (AU) g5 (′′ yr−1) g6 (′′ yr−1)

5.3066730 9.1140968 5.3073824 9.1302179 5.315 33.445

5.3098476 9.1013984 5.3106195 9.1169011 5.376 33.705

5.3130222 9.0887000 5.3138135 9.1040104 5.451 34.076

5.3161968 9.0760016 5.3170131 9.0910674 5.525 34.496

5.3193714 9.0633032 5.3202149 9.0781039 5.611 34.928

5.3225460 9.0506048 5.3234188 9.0651225 5.710 35.386

5.3257206 9.0379064 5.3266247 9.0521234 5.809 35.855

5.3288952 9.0252080 5.3298335 9.0390999 5.908 36.350

5.3320698 9.0125095 5.3330385 9.0261139 6.019 36.881

5.3352444 8.9998111 5.3362531 9.0130396 6.143 37.425

5.3384190 8.9871127 5.3394682 8.9999627 6.266 38.006

5.3415936 8.9744143 5.3426860 8.9868635 6.402 38.624

5.3447682 8.9617159 5.3459069 8.9737379 6.551 39.279

5.3479428 8.9490175 5.3491310 8.9605864 6.711 39.996

5.3511174 8.9363191 5.3523594 8.9473977 6.897 40.762

5.3542920 8.9236207 5.3555921 8.9341723 7.082 41.603

5.3574666 8.9109222 5.3588299 8.9209047 7.292 42.542

5.3606412 8.8982238 5.3620735 8.9075881 7.515 43.580

5.3638158 8.8855254 5.3653236 8.8942161 7.762 44.754

5.3669904 8.8728270 5.3685814 8.8807794 8.046 46.101

5.3701650 8.8601286 5.3718480 8.8672674 8.343 47.659

5.3733396 8.8474302 5.3751253 8.8536665 8.676 49.488

5.3765142 8.8347318 5.3784150 8.8399597 9.060 51.676

5.3796889 8.8220334 5.3817200 8.8261242 9.467 54.345

5.3828635 8.8093349 5.3850433 8.8121334 9.925 57.670

5.3860381 8.7966365 5.3883899 8.7979462 10.432 61.897

5.3892127 8.7839381 5.3917660 8.7835104 10.988 67.409

Continued on next page
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ajup,0 (AU) asat,0 (AU) ājup (AU) āsat (AU) g5 (′′ yr−1) g6 (′′ yr−1)

5.3923873 8.7712397 5.3951804 8.7687500 11.606 74.850

5.3955619 8.7585413 5.3986461 8.7535558 12.298 85.244

5.3987365 8.7458429 5.4021823 8.7377655 13.052 100.484

5.4019111 8.7331445 5.4058161 8.7211472 13.917 124.165

Fig. 4.1a shows a result of a simulation whose initial conditions were most like

the present solar system. The well known g5 and g6 frequencies are easily identified

as the two strongest peaks in the spectrum. The labels in Fig. 4.1 were placed along

the x-axis at the frequencies given by Brouwer and van Woerkom (1950). One ad-

ditional peak is visible at the location of the frequency g10 = 2g6 − g5, which arises

due to the proximity of Jupiter and Saturn to the 5:2 resonance. Fig. 4.1b shows an

example spectrum with Saturn’s semimajor axis displaced inwards by 0.14 AU, and

the g10 peak is no longer visible. Jupiter and Saturn are within the 7:3 resonance

in Fig. 4.1c, and while the g5 and g6 frequencies are still identifiable, the spectrum

shows the characteristic broadband noise of orbital chaos. One notable trend ob-

served in Figs. 4.1c–f is that as Saturn and Jupiter approach the 2:1 resonance,

the g6 frequency becomes less dominant compared with the g5 in the spectrum of

Saturn’s (h, k).

The spectral character of Saturn’s orbital history within the 2:1 resonance with

Jupiter can be quite complex. Figs. 4.1g–i show examples of spectra for orbits with

slightly different initial conditions, but still very close to the 2:1 resonance. Orbits

can be chaotic, as in Fig. 4.1h, or regular, such as in Figs. 4.1g and i. But even the

regular orbits have lost the characteristic g5 and g6 frequencies.

In all 255 simulations, when the g5 and g6 frequencies were identifiable their value

as a function of Saturn’s mean semimajor axis was obtained and the results shown

in Fig. 4.2a. An additional set of 64 simulations were carried out in which both
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Jupiter and Saturn’s semimajor axes were varied from 5.2–5.4 AU and 9.6–8.7 AU,

respectively, and the resulting g5 and g6 frequencies were identified and plotted in

Fig. 4.2b. This migration path is the same as that used in Minton and Malhotra

(2009), and the g5 and g6 frequency values are plotted in Fig. 4.2b.

4.3 Analytical calculations of the g5 and g6 frequencies

The well known first order Laplace-Lagrange secular theory provides a simple and

direct way of calculating the secular frequencies. In this theory, only the terms of

the disturbing function are retained of second order in eccentricity and first order

in mass (Murray and Dermott, 1999). In the planar two-planet case, the secular

perturbations of planet j =, where j = 5 is Jupiter and j = 6 is Saturn, are described

by the first order secular terms of the disturbing function:

Rj =
nj

a2
j

[

1

2
Ajje

2
j + Ajke5e6 cos(̟1 − ̟2)

]

, (4.2)

where n is the mean motion, and A is a matrix with elements

Ajj = +nj
1
4

mk

M⊙+mj
αjkᾱjkb

(1)
3/2(αjk), (4.3)

Ajk = −nj
1
4

mk

M⊙+mj
αjkᾱjkb

(2)
3/2(αjk), (4.4)

for j = 5, 6, k = 6, 5, and j 6= k; αjk = min{aj/ak, aj/ak}, and

ᾱjk =







1 : aj > ak

aj/ak : aj < ak,
(4.5)

and b
(1)
3/2 and b

(2)
3/2 are Laplace coefficients. The secular motion of the system can be

described as a set of linear differential equations in terms of the {h, k} vectors given

in Eq. (4.1):

ḣj = +
6
∑

p=5

Apjkj, k̇j = −
6
∑

p=5

Apjhj. (4.6)

The secular frequencies g5 and g6 are the eigenvalues of the matrix A, therefore only

depend on the relative masses of Jupiter and Saturn to the Sun, and the semimajor
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axes of Jupiter and Saturn. Using the current semimajor axes of Jupiter and Saturn

the theory gives frequency values g5 = 3.7′′ yr−1 and g6 = 22.3′′ yr−1, which are lower

than the more accurate values given by Brouwer and van Woerkom (1950) by 14%

and 20%, respectively (Laskar, 1988). Brouwer and van Woerkom (1950) achieved

their more accurate solution by incorporating higher order terms in the disturbing

function involving 2λ5 − 5λ6, which arise due to Jupiter and Saturn’s proximity to

the 5:2 resonance (the so-called “Great Inequality”). However, as Fig. 4.1b and

Fig. 4.2a illustrate, the effect of the 5:2 resonance is only important over a very

narrow range in Saturn’s semimajor axis.

The dash-dot line in Fig. 4.2 shows the calculation of the g5 and g6 frequencies as

a function of Saturn’s semimajor axis (with Jupiter fixed at 5.2 AU) using first order

Laplace-Lagrange secular theory. The theory is adequate in the vicinity of Saturn’s

current position (but away from the 5:2 resonance), but does a poor job near the 2:1

resonance. Malhotra et al. (1989) developed corrections for the first order Laplace-

Lagrange theory to account for the perturbations from n + 1 : n resonances in the

context of the Uranian satellite system. The corrections for the near 2:1 resonance

between Jupiter and Saturn are additional terms that are added to elements of the

A matrix:

Ãjj = Ajj + εn5
m6

M⊙
αC1C2 (4.7)

Ãjk = Ajk + εn6
m5

M⊙
C1C2, (4.8)

where the coefficients C1 and C2 are

C1(α) = −1
2

(

4 + α d
dα

)

b
(2)
1/2(α) (4.9)

C2(α) = +1
2

(

3 + α d
dα

)

b
(1)
1/2(α), (4.10)

and

ε =
3

2

[

m6

M⊙
(F11 − 2F21) α−2 + 2 m5

M⊙
(2F22 − F12)

]

(

λ̇5 − 2λ̇6

)2

/n2
6

(4.11)



91

where

F11 = 1 + m6

M⊙
α
(

1
3
α d

dα
+ 2

3
α2 d2

dα2

)

b
(0)
1/2 (4.12)

F12 = −2
3

m6

M⊙
α−1/2

(

2α d
dα

+ α2 d2

dα2

)

b
(0)
1/2 (4.13)

F21 = −2
3

m5

M⊙
α3/2

(

2α d
dα

+ α2 d2

dα2

)

b
(0)
1/2 (4.14)

F22 = 1 + m5

M⊙

(

1 + 7
3
α d

dα
+ 2

3
α2 d2

dα2

)

b
(0)
1/2, (4.15)

and the λ̇i are

λ̇5 = n5

[

1 − m6

M⊙
α2 d

dα
b
(0)
1/2

]

(4.16)

λ̇6 = n6

[

1 + m5

M⊙

(

1 + α d
dα

)

b
(0)
1/2

]

. (4.17)

These corrections are first order in mass, so the correction should be valid for

the giant planets where the Sun-Jupiter mass ratio is O(10−3). Importantly, these

corrections are zeroth order in eccentricity, therefore the nearby 2:1 frequencies (and

any other first order resonance) will affect the secular frequencies even if Saturn and

Jupiter were on nearly circular orbits, as in some models of the pre-migration state

of the giant planets (Tsiganis et al., 2005). Higher order resonances, such as the

third order 5:2, will have eccentricity dependent effects on the secular frequencies

that are O(ej−1), where j is the order of the resonance.

The values of the g5 and g6 frequencies using the near 2:1 mean motion resonance

corrections are found from the eigenvalues of the Ã matrix. The secular frequencies

as a function of Saturn’s semimajor axis are plotted as the dashed line in Fig. 4.2.

The corrected values match those found from the Fourier spectral analysis of the

numerical integrations for most of the range considered, with the exception of near

higher order mean motion resonances. Therefore the first order Laplace-Lagrange

secular theory with the corrections to near 2:1 mean motion resonance of Malhotra

et al. (1989) is adequate to describe the changes in the secular frequencies during

giant planet migration during of most of the giant planet migration that is relevant

for considering the effects of the asteroid belt.
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Figure 4.2: The g5 and g6 frequencies as a function of Jupiter and Saturn’s semimajor
axis. The locations of Jupiter/Saturn MMRs which have an effect on the location
of the ν6 in the range explored numerically are shown. a) The g5 and g6 frequencies
as a function of Saturn’s semimajor axis for Jupiter fixed at 5.2 AU. The solid lines
were obtained by identifying the secular frequencies from the Fourier spectra of 255
∼ 100 My N-body simulations of Jupiter and Saturn, where asat was varied from
8.32–10.5 AU. The dash-dot lines are the secular frequencies obtained using first
order Laplace-Lagrange secular theory. The dashed lines are the secular frequencies
obtained using the first order Laplace-Lagrange secular theory with corrections to
the near 2:1 mean motion resonance between Jupiter and Saturn using the method of
Malhotra et al. (1989). b) The solid lines are obtained in a similar way as the points
in (a), but in this case Jupiter’s semimajor axis was varied from 5.2–5.4 AU while
Saturn’s semimajor axis was varied from 9.56–8.7 AU. The dashed lines are the
secular frequencies obtained using the first order Laplace-Lagrange secular theory
with corrections to the near 2:1 mean motion resonance between Jupiter and Saturn
using the method of Malhotra et al. (1989).

4.4 The zero-inclination location of the ν6 resonance

The secular variation in eccentricity of an asteroid that is perturbed by the two giant

planets in my simplified solar system is approximately described by a Hamiltonian

which is analogous to a resonantly forced oscillator with a natural frequency g0 and

a forcing frequency gi ≈ g0, and ignoring any nonlinear terms:

H = −g0J + σ
√

2J cos φ, (4.18)

where φ is the resonance angle, which is approximately the measures the asteroid’s

longitude of perihelion relative to the longitude of perihelion of the planet whose



93

gi is the dominant mode. In the current solar system, g6 is the dominant mode in

Saturn’s precession rate, but as Fig. 4.1 suggests, some configurations lead to other

modes being dominant. The variable J is the canonically conjugate generalized mo-

mentum which is related to the asteroid’s orbital semimajor axis a and eccentricity

e, J =
√

a
(

1 −
√

1 − e2
)

. Because a is unchanged by the secular perturbation, the

dynamical changes in J due to the secular perturbation reflect changes in the as-

teroid’s eccentricity e. If, for simplicity, I neglect the influence of all planets except

for Jupiter and Saturn, and only consider the effect of the g6 frequency, then the

coefficient σ is defined as:

σ =
1

4

1

a5/4

∑

i

α2
i b

(2)
3/2(αi)miE

(6)
i , (4.19)

where αj = a0/aj and a0 is the asteroid semimajor axis in units of AU. The

coefficient σ is proportional to E
(6)
j , which is the power of the g6 mode in the planet

j, and is related to the eccentricity of the giant planets.

Using Poincaré variables, (x, y) =
√

2J(cos φ,− sin φ), the equations of motion

can be derived from this Hamiltonian. The equations of motion are:

ẋ = (g6 − g0) y (4.20)

ẏ = x (g6 − g0) − σ (4.21)

These equations have the following solution near resonance:

{x(t), y(t)} =
σ

g0 − g6

{cos(g6t + β0),− sin(g6t + β0)}, (4.22)

The ν6 secular resonance occurs when g0 = g6, in which case the solution is that

of a resonantly forced oscillator whose amplitude (the asteroid’s eccentricity) grows

without bounds.

By using the values of the g6 frequency as a function of Saturn and Jupiter’s

semimajor axis, shown in Fig. 4.2, I can obtain the location in semimajor axis of the

ν6 resonance. One complicating factor is that when taking into account higher order

terms in mass and eccentricity, there is a coupling between the e–̟ modes and the

i–Ω modes, so that instead of being located at a single semimajor axis, the location
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of the ν6 resonance forms surfaces in a–e–sin i space (Williams and Faulkner, 1981).

Therefore my calculations of the position of the ν6 are only strictly valid in the case

of an asteroid with zero-inclination.

The result of these calculations relating the zero-inclination position of the ν6 as

a function of Saturn’s position is shown in Fig. 4.3. For much of the asteroid belt,

the difference between the position of the ν6 as predicted by the first order Laplace-

Lagrange secular theory with near 2:1 corrections is very small — for asat = 9.17 AU

the difference between aν6
calculated numerically vs. with the corrected first order

secular theory is ∼ 5%. The effect of the 5:2 mean motion resonance on the value of

the g6 secular frequency (and hence the position of the ν6 resonance location) is only

apparent in a very narrow region that is currently not very populated by asteroids

today.

4.5 Conclusion

I have used spectral analysis of the e-̟ time history of Saturn from long-term

numerical integrations to identify the relationship between semimajor axis locations

of Jupiter and Saturn and the g5 and g6 secular frequencies, as well as the zero-

inclination position of the important ν6 secular resonance. The first order Laplace-

Lagrange secular theory with corrections for the near 2:1 mean motion resonance

between Jupiter and Saturn is adequate to describe the behavior of the secular

frequencies over a large range in Saturn’s semimajor axis. The exception to this is

in the current solar system, where the effects of the near 5:2 resonance, the “Great

Inequality,” increase the secular frequencies by a substantial amount and introduce

additional frequencies. When Jupiter and Saturn are within a resonance, such as the

5:2, 7:3, 2:1, and others, the e-̟ secular frequencies broaden and the power spectra

become noisy. Often in such cases it can be difficult to identify the equivalent g5

and g6 frequencies, and, especially near the 2:1 resonance, the g5 mode dominates

over the g6 in Saturn’s e-̟ time history. The strength of the ν6 resonance is related

to the power of the g6 mode, and in power spectra analysis the power of a mode
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Figure 4.3: The position of the ν6 resonance (at zero inclination) as a function of
Jupiter and Saturn’s semimajor axes. a) The dashed line shows the calculation
using linear secular theory, with a correction for the effect of the near 2:1 mean
motion resonance between Jupiter and Saturn (Malhotra et al., 1989). The solid
line was obtained by using the g6 eigenfrequencies obtained from spectral analysis of
255 asteroid from Fig. 4.2a and then calculating the positions where g0−g6 = 0 (for
a particle at zero inclination) at each asat location. The locations of Jupiter/Saturn
MMRs which have an effect on the location of the ν6 in the range explored numeri-
cally are shown. b) Using the linear secular theory as in a), the two solid lines show
the result for two different values of Jupiter’s semimajor axis, labeled in AU. The
points are obtained in a similar way as the points in (a), but in this case Jupiter’s
semimajor axis was varied from 5.2–5.4 AU while Saturn’s semimajor axis was varied
from 9.6–8.7 AU as in Fig. 4.2b.

is proportional to the amplitude of the peak at that mode. Therefore, if Saturn

and Jupiter were once closer to the 2:1 resonance than today, such as in Figs. 4.1c–

f where the g5 mode dominates the power spectra, the ν6 may not have been as

powerful as today.

The particular details of the relative powers in the gi modes in the giant planets

is very dependent on choice of initial conditions. Here I have chosen initial con-

ditions for Jupiter and Saturn in my simulations that are similar to their current

configurations, changing only the initial semimajor axes of the planets and setting

inclinations to zero. The details of the migration history of the giant planets, in-

cluding the eccentricities of the planets and their apsidal phases, are important for

determining the effect of the ν6 resonance on the asteroid belt during migration.



96

CHAPTER 5

AN ANALYTICAL MODEL FOR THE SWEEPING ν6 RESONANCE

5.1 Analytical theory of a sweeping secular resonance

I adopt a simplified model in which the main belt asteroids are perturbed only by

the ν6 resonance. I use a system of units where the mass is in solar masses, the

semimajor axis is in units of AU, and the unit of time is (1/2π)y. With this system

the gravitational constant, G, is unity. An asteroid’s secular perturbations close to a

secular resonance can be described by the following Hamiltonian function (Malhotra,

1998):

Hsec = −g0J + σ
√

2J cos(wp − ̟), (5.1)

where wp = gpt + βp describes the phase of the p-th eigenmode of the linearized

eccentricity-pericenter secular theory for the Solar system planets (Murray and Der-

mott, 1999), gp is the associated eigenfrequency, ̟ is the asteroid’s longitude of

perihelion, J =
√

a
(

1 −
√

1 − e2
)

is the canonical momentum which is related to

the asteroid’s orbital semimajor axis a and eccentricity e; J and −̟ are the canon-

ically conjugate pair of variables in this 1-degree-of-freedom Hamiltonian system.

The coefficients g0 and σ are given by:

g0 =
1

4

1

a3/2

∑

j

α2
jb

(1)
3/2(αj)mj, (5.2)

σ =
1

4

1

a5/4

∑

j

α2
jb

(2)
3/2(αj)mjE

(p)
j , (5.3)

where j is the planet, E
(p)
j is the amplitude of the gp mode in the jth planet’s orbit,

αj = min{a/aj, aj/a}, mj is the ratio of the mass of planet j to the Sun, and b
(1)
3/2(αj)

and b
(2)
3/2(αj) are Laplace coefficients.
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It is useful to make a canonical transformation to new variables (φ, P ) defined

by the following generating function,

F(−̟,P, t) = (wp(t) − ̟)P (5.4)

Thus, φ = ∂F/∂P = (wp(t) − ̟) and J = −∂F/∂̟ = P . The new Hamiltonian

function is H̃sec = Hsec + ∂F/∂t,

H̃sec = (ẇp(t) − g0)J + σ
√

2J cos φ, (5.5)

where I have retained J to denote the canonical momentum, since P = J . It is

useful to make a second canonical transformation to canonical eccentric variables,

x =
√

2J cos φ, y = −
√

2J sin φ, (5.6)

where x is the canonical coordinate and y is the canonically conjugate momentum.

The Hamiltonian expressed in these variables is

H̃sec = (ẇp(t) − g0)
x2 + y2

2
+ σx. (5.7)

During planetary migration, the secular frequency gp is a slowly varying function

of time. I approximate its rate of change, ġp = λ, as a constant, so that

ẇp(t) = gp,0 + 2λt. (5.8)

I define t = 0 as the epoch of exact resonance crossing, so that gp,0 = g0 (cf.

Ward et al., 1976). Then, ẇp(t) − g0 = 2λt, and the equations of motion from the

Hamiltonian 5.7 can be written as:

ẋ = 2yλt, (5.9)

ẏ = −2xλt − σ. (5.10)

These equations of motion form a system of linear, nonhomogenous differential equa-

tions, whose solution is a linear combination of a homogeneous and a particular

solution. The homogeneous solution can be found by inspection, giving:

xh(t) = c1 cos λt2 + c2 sin λt2, (5.11)

yh(t) = −c1 sin λt2 + c2 cos λt2, (5.12)
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where c1 and c2 are constant coefficients. I use the method of variation of parameters

to find the particular solution. Accordingly, I replace the constants c1 and c2 in the

homogeneous solution with functions A(t) and B(t), to seek the particular solution

of the form

xp(t) = A(t) cos λt2 + B(t) sin λt2 (5.13)

yp(t) = −A(t) sin λt2 + B(t) cos λt2. (5.14)

Substituting this into the equations of motion I now have:

Ȧ cos λt2 + Ḃ sin λt2 = 0, (5.15)

−Ȧ sin λt2 + Ḃ cos λt2 = −σ; (5.16)

therefore

Ȧ = σ sin λt2, (5.17)

Ḃ = −σ cos λt2. (5.18)

Eqs. (5.17) and (5.18) cannot be integrated analytically, but they can be expressed

in terms of Fresnel integrals (Zwillinger, 1996). The Fresnel integrals are defined as

follows:

S(t) =

∫ t

0

sin t′2dt′, (5.19)

C(t) =

∫ t

0

cos t′2dt′. (5.20)

and have the following properties:

S(−t) = −S(t), (5.21)

C(−t) = −C(t), (5.22)

S(∞) = C(∞) =

√

π

8
. (5.23)

Therefore

A(t) =
σ
√

|λ|
S
(

t
√

|λ|
)

, (5.24)

B(t) = − σ
√

|λ|
C
(

t
√

|λ|
)

. (5.25)
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I denote initial conditions with a subscript i, and write the solution to Eqs. (5.9)

and (5.10) as

x(t) = xi cos
[

λ
(

t2 − t2i
)]

+ yi sin
[

λ
(

t2 − t2i
)]

+
σ
√

|λ|
[

(S − Si) cos λt2 − (C − Ci) sin λt2
]

, (5.26)

y(t) = −xi sin
[

λ
(

t2 − t2i
)]

+ yi cos
[

λ
(

t2 − t2i
)]

− σ
√

|λ|
[

(C − Ci) cos λt2 + (S − Si) sin λt2
]

. (5.27)

Because the asteroid is swept over by the secular resonance at time t = 0, I can

calculate the changes in x, y by letting ti = −tf and evaluating the coefficients

Ci, Cf , Si, Sf far from resonance passage, i.e., for tf
√

|λ| ≫ 1, by use of 5.23. Thus

I find

xf = xi + σ

√

π

2|λ|
[

cos λt2i − sin λt2i
]

, (5.28)

yf = yi − σ

√

π

2|λ|
[

cos λt2i + sin λt2i
]

. (5.29)

The new value of J after resonance passage is therefore given by

Jf =
1

2

(

x2
f + y2

f

)

=
1

2

(

x2
i + y2

i

)

+
πσ2

2|λ| + σ

√

π

2|λ| [xi(cos λt2i − sin λt2i ) − yi(cos λt2i + sin λt2i )]

= Ji +
πσ2

2|λ| + σ

√

2πJi

|λ| cos(φi − λt2i −
π

4
). (5.30)

With a judicious choice of the initial time, ti, and without loss of generality, the

cosine in the last term becomes cos ̟i, and therefore

Jf = Ji +
πσ2

2|λ| + σ

√

2πJi

|λ| cos ̟i. (5.31)

The asteroid’s semimajor axis a is unchanged by the secular perturbation; there-

fore the changes in J due to the secular perturbation reflect changes in the asteroid’s

eccentricity e. Using the following definition:

δe ≡
∣

∣

∣

∣

σ

√

π

|λ|√a

∣

∣

∣

∣

, (5.32)
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For small e, I can use the approximation J ≃ 1
2

√
ae2. Considering all possible values

of cos ̟i ∈ {−1, +1}, the final and initial eccentricity are related by

emin,max ≃ |ei ± δe| . (5.33)

For asteroids with non-zero initial eccentricity, the phase dependence in Eq. (5.33)

means that secular resonance sweeping can potentially both excite and damp orbital

eccentricities (depending on the particular value of δe). Considering all possible

values of cos ̟i ∈ {−1, +1}, the final eccentricity lies in the range [|ei−δe|, |ei +δe|].

5.2 ν6 sweeping of the Main Asteroid Belt

In order to apply Eqs. 5.31 and 5.33 to the problem of the ν6 resonance sweeping

through the asteroid belt, I must obtain values for the parameter σ (Eq. 5.3), for

semimajor axis values in the main asteroid belt. I must also find the relationship

between the giant planets orbits and the location of the ν6 resonance. The loca-

tion of the ν6 resonance is defined as the semimajor axis, sν6
, where the rate, g0

(Eq. 5.2), of pericenter precession of a massless particle (or asteroid) is equal to

the g6 eigenfrequency of the solar system. In the current solar system, the g6 fre-

quency is the secular mode with the most power in Saturn’s eccentricity-pericenter

variations, and is very sensitive to Saturn’s semimajor axis. During the epoch of

planetesimal-driven planet migration, Jupiter migrated by only a small amount but

Saturn likely migrated significantly more (Fernandez and Ip, 1984; Malhotra, 1995;

Tsiganis et al., 2005). I therefore adopt a simple model of planet migration in which

Jupiter is fixed at 5.2 AU and only Saturn migrates. I also neglect any effects from

the ice giants Uranus and Neptune, as well as secular effects due to the more mas-

sive icy planetesimal disk and more massive asteroid belt. In this simplified model,

the g6 frequency varies with time as Saturn migrates, so g6 is solely a function of

Saturn’s semimajor axis. In contrast with the variation of g6, there is negligible

variation of the asteroid’s precession rate, g0, as Saturn migrates.

For fixed planetary semimajor axes, the Laplace-Lagrange secular theory pro-

vides a simple and direct way of calculating the secular frequencies of the planets.
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In this theory, only the terms of the disturbing function are retained of second order

in eccentricity and first order in mass (Murray and Dermott, 1999). In the planar

two-planet case, the secular perturbations of planet j, where j = 5 is Jupiter and

j = 6 is Saturn, are described by the following disturbing function:

Rj =
nj

a2
j

[

1

2
Ajje

2
j + Ajke5e6 cos(̟1 − ̟2)

]

, (5.34)

where n is the mean motion, and A is a matrix with elements

Ajj = +nj
1
4

mk

M⊙+mj
αjkᾱjkb

(1)
3/2(αjk), (5.35)

Ajk = −nj
1
4

mk

M⊙+mj
αjkᾱjkb

(2)
3/2(αjk), (5.36)

for j = 5, 6, k = 6, 5, and j 6= k; αjk = min{aj/ak, aj/ak}, and

ᾱjk =







1 : aj > ak

aj/ak : aj < ak.
(5.37)

The secular motion of the planets is then described by a set of linear differential

equations for the eccentricity vectors, ej(sin ̟j, cos ̟j) ≡ (hj, kj),

ḣj = +
6
∑

p=5

Apjkj, k̇j = −
6
∑

p=5

Apjhj. (5.38)

For fixed planetary semimajor axes, the coefficients are constants, and the solution

is given by a linear superposition of eigenmodes:

{hj, kj} =
∑

p

E
(p)
j {cos(gpt + βp), sin(gpt + βp)}, (5.39)

where gp are the eigenfrequencies of the matrix A and E
(p)
j are the corresponding

eigenvectors; the amplitudes of the eigenvectors and the phases βp are determined

by initial conditions. In my 2-planet model, the secular frequencies g5 and g6 depend

on the relative masses of Jupiter and Saturn to the Sun and on the semimajor axes

of Jupiter and Saturn.

Using the current semimajor axes of Jupiter and Saturn the Laplace-Lagrance

theory gives frequency values g5 = 3.7′′ yr−1 and g6 = 22.3′′ yr−1, which are lower
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than the more accurate values given by Brouwer and van Woerkom (1950) by 14%

and 20%, respectively (Laskar, 1988). Brouwer and van Woerkom (1950) achieved

their more accurate solution by incorporating higher order terms in the disturbing

function involving 2λ5 − 5λ6, which arise due to Jupiter and Saturn’s proximity

to the 5:2 resonance (the so-called “Great Inequality”). However the effect of the

5:2 resonance is only important over a very narrow range in Saturn’s semimajor

axis. More significant is the perturbation owing to the 2:1 near-resonance of Jupiter

and Saturn. Malhotra et al. (1989) developed corrections to the Laplace-Lagrange

theory to account for the perturbations from n + 1 : n resonances in the context of

the Uranian satellite system. Applying that approach to my problem, I find that the

2:1 near-resonance between Jupiter and Saturn leads to zeroth order corrections to

the elements of the A matrix. Including these corrections, I determined the secular

frequencies for a range of values of Saturn’s semimajor axis; the result for g6 is

shown in Fig. 5.1 (dashed line).

I have also calculated values for the eccentricity-pericenter eigenfrequencies by

direct numerical integration of the two-planet, planar solar system. In these simu-

lations, Jupiter’s initial semimajor axis was 5.2 AU, Saturn’s semimajor axis, asat,

was one of 233 values in the range 7.3–10.45 AU, initial eccentricities of Jupiter

and Saturn were 0.005, and initial inclinations were zero. The initial longitude of

pericenter and mean anomalies of Jupiter were ̟jup,i = 15◦ and λjup,i = 92◦, and

Saturn were ̟sat,i = 338◦ and λsat,i = 62.5◦. In each case, the planets orbits were

integrated for 100 myr, and a Fourier transform of the time series of the {hj, kj}
yields their spectrum of frequencies. For regular (non-chaotic) orbits, the spectral

frequencies are well defined and are readily identified with the frequencies of the

secular solution. The result for the g6 frequency obtained by this numerical analysis

are shown by the solid line in Fig. 5.1 .

The comparison between the numerical analysis and the analytical solution in-

dicates that the linear secular theory (with corrections for the 2:1 near-resonance)

is an adequate model for the variation in g6 as a function of asat. I therefore used

the analytical secular theory to calculate the eigenvector components E
(6)
j and the
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Figure 5.1: The ν6 resonance during planet migration. a) The g6 eigenfrequency
as a function of Saturn’s semimajor axes for Jupiter fixed at 5.2 AU. The dashed
line shows the calculation using linear secular theory, with a correction for the
effect of the near 2:1 mean motion resonance between Jupiter and Saturn (Malhotra
et al., 1989). The solid line was obtained from spectral analysis of 233 solar system
integrations. The locations of Jupiter/Saturn MMRs which have an effect on the
value of the g6 in the range explored numerically are shown. The position of the
ν6 resonance (at zero inclination) as a function of Jupiter and Saturn’s semimajor
axes. b) The zero inclination position of the ν6 resonance as a function of Saturn’s
position for Jupiter fixed at 5.2 AU. The dashed line shows the calculation using
linear secular theory, with a correction for the effect of the near 2:1 mean motion
resonance between Jupiter and Saturn (Malhotra et al., 1989). The solid line was
obtained by using the g6 eigenfrequencies obtained from spectral analysis of the 233
n-body simulations from a and then calculating the positions where g0 − g6 = 0 (for
a particle at zero inclination) at each asat location.

location aν6
of the ν6. I used the same values for the initial conditions of Jupiter

and Saturn as in the direct numerical integrations discussed above. The value of aν6

was found by solving for the value of a0 such that g0 = g6, where g0 was calculated

using Eq. (5.2) and g6 is the eigenfrequency associated with the p = 6 eigenmode.

The results were used in Eq. (5.3) along with the value of aν6
as a function of asat

from Fig. 5.1a, and are plotted in Fig. 5.2.

I checked the results of my analytical model against four different n-body simu-

lations of test particles in the asteroid belt that experience the effects of a migrating

Saturn. In each of the four simulations, 30 test particles were placed at 2.3 AU and
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Figure 5.2: The value of the coefficient σ defined by Eq. (5.3) as a function of the

zero inclination position of the ν6 resonance. The value of E
(i)
j as a function of

Saturn’s position (and hence on the position of the ν6) was calculated using first
order Laplace-Lagrange secular theory with corrections arising from the 2:1 Jupiter-
Saturn mean motion resonance.

given different initial longitudes of pericenter spaced 10◦ apart. The numerical inte-

gration was performed using an implementation of a symplectic mapping (Wisdom

and Holman, 1991; Saha and Tremaine, 1992). Jupiter and Saturn were the only

planets included, and the asteroids were approximated as massless test particles. An

artificial acceleration was applied to Saturn to cause it to migrate outward starting

at 8.5 AU at the desired rate. The current Solar System values of the eccentricity

of Jupiter and Saturn were used and inclinations were set to zero, and the time step

was 0.01 yr. The only parameters varied between each of the four simulations were

the initial osculating eccentricities of the test particles, ei, and the migration speed

of Saturn, ȧsat. The parameters explored were:

a) ei = 0.2, ȧsat = 1.0 AU My−1;

b) ei = 0.2, ȧsat = 0.5 AU My−1;
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c) ei = 0.1, ȧsat = 1.0 AU My−1;

d) ei = 0.3, ȧsat = 1.0 AU My−1.

Two forms of the analytical model were checked. First, the equations of motion

given by Eqs. (5.9) and (5.10) were integrated using values for λ that were approx-

imately equivalent to the values of ȧsat used in the numerical integrations. Second,

the eccentricity bounds calculated using Eq. (5.33) were calculated. The results of

each of these four comparisons are shown in Fig. 5.3. While the test particles in

the numerical integrations exhibit somewhat more complicated behavior than the

analytical approximation, the values of the maximum and minimum final eccentric-

ities from Eq. (5.33) (shown as horizontal dashed lines) are in good agreement with

the final values of the eccentricities of the numerically integrated test particles. The

slower sweep rates yield higher eccentricity excitation, but the phase dependence

means that a secular resonance can both excite and damp eccentricities of asteroids

that have a non-zero initial eccentricity. Eq. (5.33) somewhat underpredicts the

maximum final eccentricity, which may be due to higher order terms in the disturb-

ing function that may become more important at high eccentricity, as well as effects

due to close encounters with Jupiter.
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Figure 5.3: A comparison between the integrated equations of motion given by
Eqs. (5.9) and (5.10) and n-body numerical integrations of test particles at 2.3 AU.
The dashed lines represent the envelope of the predicted final eccentricity using
Eq. (5.33).
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5.3 Double-peaked asteroid eccentricity distribution
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Figure 5.4: The final eccentricity distribution of an ensemble of particles with ini-
tial eccentricity ei = 0.1 and uniformly distributed values of the phase angle ̟i.
The effect due to the sweeping ν6 resonance was modeled using Eq. (5.31). The
parameters were chosen to simulate asteroids at a = 2.3 AU and ȧsat = 1 AU My−1.

An important result of in Eq. (5.31) is that if the asteroid belt was initially

“cold,” that is asteroids were on nearly circular orbits prior to secular resonance

sweeping, then the asteroids would be nearly uniformly excited to a narrow range of

final eccentricities, the value of which would be determined by the rate of resonance

sweeping. Secular resonance sweeping removes asteroids by exciting their eccentric-

ities above planet-crossing values, therefore a uniformly excited asteroid belt will

either lose all its asteroids or none. In order to have partial depletion of the asteroid

belt as well as yield an eccentricity distribution with a significant dispersion, such as

that seen in the observed asteroid belt shown in Fig. 5.5a, the asteroid eccentricities

must be excited prior to resonance sweeping. However, the final eccentricities of an

ensemble of test particles excited by the sweeping ν6 resonance will not uniformly

fill up the bounds given by Eq. (5.33). This is illustrated in Fig. 5.4 showing the

effects of applying Eq. (5.31) to a simulated population of asteroids with an initial
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eccentricity ei = 0.1 and a uniform distribution of the initial phase angle ̟i.
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Figure 5.5: Proper eccentricity and inclination distributions of asteroids with
H ≤ 10.8. Only asteroids that were not identified as being members of collisional
families are included here. The proper elements were taken from the AstDys online
data service (Knežević and Milani, 2003). The solid lines are the best fit gaussian
distributions to the observational data. The dashed line is the best fit double-peaked
distribution for the eccentricity distribution.

When the simulated asteroids orbit with a range of semimajor axes from 2–

2.8 AU, and have an initial eccentricity distribution rather than a single eccentricity,

secular resonance sweeping produces a double-peaked eccentricity distribution. The

results of applying Eq. (5.31) to an ensemble of simulated asteroids with a distribu-

tion of initial eccentricities and semimajor axes is shown in Fig. 5.6. Fig. 5.6a shows

the initial eccentricity distribution, which is modeled as a Gaussian distribution with

a mean at e = 0.15. Fig. 5.6b shows the same population after ν6 resonance sweep-

ing has occurred due to the migration of Saturn at a rate of 1.0 AU/ My. When an

ensemble of asteroids with a Gaussian eccentricity distribution is subjected to the

sweeping secular resonance, a double-peaked eccentricity distribution results. Be-

cause of the slight bias towards the upper limit of the eccentricity excitation band,

proportionally more asteroids are found in the upper peak. If the high-e peak is

above the Mars-crossing value, then that population will be eroded as planetary

encounters remove the asteroids from the main belt. After erosion, the remaining

asteroid belt may still exhibit a double peak, with the low-e peak corresponding

to the original low-e peak produced by the ν6 resonance sweeping, and the high-e
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Figure 5.6: The effects of the sweeping ν6 resonance on an ensemble of asteroids
between 2–2.8 AU with a uniform distribution of phases. a The initial distribution
of eccentricities. The mean of the distribution is 0.15 and the standard deviation is
0.02. b The final distribution of eccentricities after ν6 sweeping, using the analytical
model given by Eq. (5.31) with ȧsat = 1 AU My−1. The y-axes are not to the same
scale.

peak near the Mars-crossing eccentricity value. Alternatively, if the ν6 resonance

sweeping was very fast, the observed double peaked asteroid eccentricity distribu-

tion may be a direct consequence of the sweeping. In this case, very few asteroids

would have been excited above the Mars-crossing value, and the asteroid belt may

have experienced only moderate levels of depletion due to its new dynamical struc-

ture (i.e. the post-sweeping asteroid belt would contain new unstable zones at the

present-day locations of mean motion and secular resonances). In either case, the

observed double-peaked asteroid eccentricity distribution is well explained by the

sweeping of the ν6 secular resonance.

5.4 A Constraint on Saturn’s migration rate

By relating the g6 secular frequency to the semimajor axis of Saturn, ġ6 can be

related to the migration rate of Saturn, ȧsat. I used the results of my analytical
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model to set limits on the rate of migration of Saturn, with the caveat that many

important effects are ignored, such as asteroid-Jupiter mean motion resonances, and

Jupiter-Saturn mean motion resonances with the exception of the 2:1 resonance. I

have confined my analysis to only the inner main belt, between 2.2–2.8 AU. Beyond

2.8 AU strong jovian mean motion resonance become more numerous. The migra-

tion of Jupiter would have caused strong jovian mean motion resonances to sweep

the asteroid belt, causing additional depletion beyond that of the sweeping ν6 reso-

nance. There is evidence from the distribution of asteroids in the main belt that the

sweeping of the 5:2, 7:3, and 2:1 jovian mean motion resonances may have depleted

the main belt (Minton and Malhotra, 2009). A further complication is that sweep-

ing jovian mean motion resonances may have also trapped icy planetesimals that

entered the asteroid belt region from their source region beyond Neptune (Levison

et al., 2009). The effects of these complications are reduced when I only consider

the inner asteroid belt. From Fig. 5.1b, the ν6 would have swept the inner asteroid

belt region between 2.2–2.8 AU when Saturn was between ∼ 8.5–9.2 AU. Therefore

the limits on ȧsat that I set using the inner asteroid belt as a constraint are only

applicable for this particular portion of Saturn’s migration history.

An estimated final eccentricity as a function of initial asteroid semimajor axis,

initial asteroid eccentricity, and the migration rate of Saturn is shown in Fig. 5.7.

The larger the initial asteroid eccentricities, the wider the bounds in their final

eccentricities. If I adopt the criterion that an asteroid is lost from the main belt

when it achieves a planet-crossing orbit (either Jupiter or Mars) and that initial

asteroid eccentricities were therefore confined to . 0.4, then from Fig. 5.7 Saturn’s

migration rate while the ν6 resonance was passing through the inner asteroid belt

must have been ȧsat & 0.2 AU My−1. This model suggests that if Saturn’s migration

rate had been slower than 0.2 AU My−1 while it was migrating across ∼ 8.5–9.2 AU,

then the inner asteroid belt would have been completely swept clear of asteroids by

the ν6 resonance.

The observed eccentricity distribution of the main asteroid belt may be used to

further constrain the migration rate of Saturn. As Fig. 5.5 shows, the eccentricity
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Figure 5.7: Estimated final eccentricity of asteroids as a function of asteroid semima-
jor axis and eccentricity for three different migration rates of Saturn using Eq. (5.33).
Asteroids swept by the ν6 resonance can have a range of final eccentricities depend-
ing on their apsidal phase, ̟i. The outermost shaded region demarcates the range
of final eccentricities for asteroids with an initial eccentricity ei = 0.4. The inner-
most shaded region demarcates the range of final eccentricities for asteroids with an
initial eccentricity ei = 0.2. The solid line at the center of the shaded regions is the
final eccentricity for an asteroid with an initial eccnetricity ei = 0.

distribution of large, primordial asteroids is well modeled as a double-peak Gaussian.

If the pre-sweeping asteroid belt had a Gaussian eccentricity distribution, then the

lower peak of the post-sweeping asteroid belt should be equal to the lower bound

of Eq. (5.33) because the peaks of the post-sweeping distribution correspond to the

upper and lower bounds of Eq. (5.33) for ei equal to the peak eccentricity of the pre-

sweeping distribution (note that the equation relates single ei values to ef values,

but here I am applying it to eccentricity distributions). Using Eq. (5.33), assuming

that the pre-sweeping eccentricity distribution had a peak at 0.4 and very little

dispersion (the maximum possible value), then the low-e peak of the eccentricity

distribution at ∼ 0.09 implies that ȧsat & 0.5 AU My−1. If the peak of the initial

eccentricity distribution was smaller than 0.4 then the lower limit of ȧsat would be

even higher. The lower limit on the rate of Saturn’s migration as a function of

Saturn’s semimajor axis is plotted in Fig. 5.8 (the upper horizontal line). The lower

limit of ȧsat > 0.2 AU My−1 that would result in all primordial asteroids being

excited to Mars-crossing orbits, regardless of initial eccentricity, is also plotted in
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Fig. 5.8 (the lower horizontal line).
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Figure 5.8: Limits on the migration rate of Saturn as a function of Saturn’s semi-
major axis. The horizontal lines are the lower limits of ȧsat derived here. The lower
horizontal line corresponds to the limit ȧsat > 0.2 AU My−1. If Saturn had migrated
at a rate slower than this limit, then all asteroids swept by the ν6 resonance would
have been excited to Mars-crossing orbits. The upper horizontal line corresponds
to the limit ȧsat > 0.5 AU My−1. At this limit, an asteroid belt with an initially
Gaussian eccentricity distribution with a mean of ∼ 0.4 would have a double peak
distribution after being swept by the ν6 resonance with the lower peak correspond-
ing to the lower peak of the best fit double Gaussian distribution to the observed
asteroids shown in Fig. 5.5a. The solid diagonal lines are the migration rate as a
function of semimajor axis using the migration model given by Eq. (5.40) for three
different values of the timescale τ .

Some studies of planet migration model the migration history of the giant planets

as exponential functions, of the form:

a = a0 + ∆a(1 − e−t/τ ), (5.40)

where a0 is the initial semimajor axis of the planet, ∆a is the migration distance,

and τ is a time scale. For comparison I have plotted model migration paths for three

different values of the timescale τ in Fig. 5.8. The timescale τ = 0.6 My is that

needed to always be above the rate limit set by the distribution of asteroids in the
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main belt, the most stringent rate limit discussed here. The timescale τ = 1.5 My

is that needed to always be above the lower rate limit of ȧsat > 0.5 AU My−1.

5.5 Summary and Discussion

My results suggest that the initial dynamical excitation of the asteroid belt during

the epoch of planetesimal-driven giant planet migration was relatively short-lived.

Based on the analytical model of the sweeping ν6 resonance developed here, if Sat-

urn’s migration rate must have been ȧsat & 0.1 AU My−1 while Saturn migrated

between 8.5–9.2 AU. If Saturn had migrated slower than this, then the inner as-

teroid belt would look quite different today than the one that we observe. My

analytical model predicts that the action of the ν6 resonance should have excited all

asteroids into planet-crossing orbits if Saturn had migrated at such a slow speed.

This lower limit on the migration rate of Saturn can be further refined by noting a

unique feature of the asteroid belt’s eccentricity distribution. Based on the observed

double-peaked eccentricity distribution of the population of asteroids with H ≤ 10.8,

I estimate that Saturn’s migration rate must have been ȧsat & 0.5 AU My−1 while

Saturn migrated between 8.5–9.2 AU. These lower limits on the migration rate

implies that Saturn’s total migration may have taken place in ∼ 1–10 My, or if

an exponential model of planet migration is used such as that of Eq. (5.40), the

migration timescale must have been τ . 1.5–0.6 My. However, in my analysis I

have neglected the effects of sweeping mean motion resonances due to the migration

of Jupiter. Mean motion resonance sweeping may reduced the efficiency of secular

resonance sweeping. Asteroids temporarily trapped inside a sweeping mean motion

resonance would have pericenter precession rates that are different than those cal-

culated using Eq. (5.2). However the observed semimajor axis distribution of the

asteroid belt would be expected to be very different than that of the observed belt if

the only asteroids that survived the passage of the ν6 resonance were those that were

temporarily trapped in mean motion resonances. Under this scenario, the Jupiter-

facing sides of mean motion resonances would be expected to have an excess of
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asteroids compared with the Sun-facing sides, because only the Jupiter-facing sides

of the modern-day Kirkwood gaps would have felt the presence of sweeping strong

mean motion resonances during the sunward migration of Jupiter. This would be

in contradiction to the observed asteroid belt where the observed the Jupiter-facing

sides of mean motion resonances show a depletion of asteroids (Minton and Malho-

tra, 2009).

These results depend strongly on the eccentricity of the giant planets during the

migration. The coefficient σ is proportional to the power of the g6 mode, which

is related to the eccentricities of the giant planets (namely Saturn and Jupiter).

Therefore if the giant planets’ orbits were more circular than they are today while

the ν6 resonance was passing through the inner asteroid belt, then the migration

timescale could have been longer without having cleared away all asteroids. From

Eq. (5.39), and the definition ej(sin ̟j, cos ̟j) ≡ (hj, kj), the value of E
(p)
j is a

linear combination of the eccentricities of the giant planets. Because Saturn is the

planet with the largest amplitude of the p = 6 mode, from Eq. (5.31) the relation-

ship between the sweep rate and the value of Saturn’s eccentricity is approximately

λmin ∝ e2
sat. Therefore, to increase the limiting timescale by a factor of ten would

only require that the giant planets’ eccentricities were ∼ 0.3× their current value

(or ejup,sat ≈ 0.015). However, this would need to have occurred while Saturn was

between ∼ 8.5–9.2 AU, so some mechanism would need to have increased Saturn’s

eccentricity up to its present value after the ν6 had already swept through the inner

asteroid belt. One solution to this dilemma may be that Eq. (5.40) is simply a poor

model for the migration history of the giant planets. A model in which Saturn’s

migration rate remained relatively constant throughout the era planet migration

rather would last longer than an exponential model. For example, a migration rate

limit of ȧsat > 0.5 AU My−1 means that the total time of migration is tmig . 2 My

assuming that Saturn migrated outward a distance of ∼ 1 AU.

The short timescale derived here is in disagreement with other published esti-

mates of the migration rate of the giant planets. Murray-Clay and Chiang (2005)

exclude τ ≤ 1 My to 99.65% confidence using the lack of a large observed asym-
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metry in the population of Kuiper belt objects in the two libration centers of the

2:1 Neptune mean motion resonance. Boué et al. (2009) exclude τ ≤ 7 My based

on the observed tilt of Saturn. They find that τ > 7 My, and the migration path

using this timescale limit is also plotted on Fig. 5.8. My results suggest that if

planet migration occurred at the slow rates implied by these observations, then the

inner asteroid belt should have been swept clear of asteroids by the effect of the ν6

secular resonance. Brasser et al. (2009) have suggested that no smooth migration

model can account for the currently observed secular amplitudes in the giant planet

system, and that a giant planet scattering event must have taken place. Giant

planet scattering could potentially cause the giant planets to migrate in timescales

comparable to those found here. Resolving these disparate giant planet migration

timescales will be a goal for future models of planet migration. In addition, better

modeling of the combined effects of overlapping sweeping mean motion and secular

resonances will better explain how some asteroids can survive when Saturn’s migra-

tion rate is slower than the lower limits derived here. Understanding the nature of

the observed double-peaked eccentricity distribution may also help illuminate the

pre-migration state of the asteroid belt, which may help constrain mechanisms for

producing the primordial excitation and level of depletion of the main belt. Apply-

ing the analytical model developed here for the ν6 resonance to the ν16 resonance (an

inclination-longitude of the ascending node secular resonance) will also be able to

take advantage of the observed inclination distribution of the main belt as a further

constraint on the migration history of the giant planets.
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CHAPTER 6

SOLAR WIND LITHIUM ENHANCEMENT BY PLANETESIMAL

BOMBARDMENT

6.1 Introduction

The solar photosphere is highly depleted in lithium relative to the chondritic abun-

dance, with the photosphere depleted in Li by a factor of 170 ± 60 relative to

chondrites (Asplund et al., 2006). The two stable isotopes of lithium are destroyed

in the Sun at different rates, with 6Li being destroyed ∼90× faster than 7Li (Proffitt

and Michaud, 1989). Since lithium is the only element that is significantly enriched

in chondrites relative to the photosphere, the in-fall of material with a chondritic

6Li/7Li ratio, such as asteroids or comets, into the Sun may have had an effect on

the 6Li/7Li ratio in the solar photosphere. The composition of the solar wind is

expected to reflect the composition of the solar photosphere, therefore a measure-

ment of the lithium isotope ratio in solar wind implanted material could be useful

in understanding the bombardment history of the inner solar system.

The current asteroid belt contains ∼ 6 × 10−4 M⊕ of material (Krasinsky et al.,

2002). Evidence from lunar and meteoritic samples, as well as the cratering record

of the inner terrestrial planets, seems to indicate that the asteroid belt suffered

a dynamical depletion event ∼ 500 My after the planets formed. This event has

been termed the Lunar Cataclysm, or more generally the Late Heavy Bombardment

(LHB), and it resulted in a surge in the impact rate in the inner solar system and

lasted between 50-200 My (Strom et al., 2005).

The amount of material that was removed from the asteroid belt during the LHB

is poorly constrained, and the current best estimates place the pre-LHB main belt

mass at about ∼ 10–20× its current mass, or roughly 6–12 × 10−3 M⊕ (Levison

et al., 2001; Bottke et al., 2005b; O’Brien et al., 2007). In addition to asteroids,
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comets may also have been responsible for some of inner solar system impactors. It

is also not known how much cometary material was involved in the LHB, but the

size distribution of impactors matches the size distribution of the main asteroid belt,

implying that at least the end of the LHB was dominated by asteroids and that there

was no size selection during the depletion of the asteroid belt (Strom et al., 2005).

Models of planetesimal-driven planet migration suggest that the influx of comets

onto the terrestrial planets during the migration-induced perturbation would have

roughly equalled that of asteroids (Gomes et al., 2005).

The asteroids delivered to the inner solar system by the LHB were likely excited

by the sweeping of resonances as Jupiter and Saturn migrated. The two most

important resonances for delivering main belt asteroids to the inner solar system are

the ν6 secular resonance and the 3:1 mean motion resonance with Jupiter. About

∼ 65–75% of objects excited by these resonances impact the Sun (Gladman et al.,

1997; Ito and Malhotra, 2006). However, as I showed in Chapter 2, §2.5.1, the

overall probability of solar impact from the main asteroid belt is ∼ 15%.

In this paper I will attempt to develop an analytical model of the solar wind

6Li/7Li ratio both before, during, and after the LHB. In order to properly model

this quantity the following questions need to be answered:

a) How much lithium did the Sun have at the time of the LHB?

b) What were the nuclear reaction rates of each lithium isotope in the solar

convective zone at the time of the LHB?

c) What was the mass flux of the solar wind at the time of the LHB?

d) Are there alternative sources of solar wind 6Li?

e) How much chondritic material impacted the Sun during the LHB?

f) How much dust was produced during the LHB, and what fraction of it was

ionized and directly injected into the solar wind rather than accreted onto the

solar convective zone?
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If reasonable quantitative answers to each of the above questions can be found then

it may be possible to answer the question: Would we be able to see evidence for the

LHB in the form of an isotopic anomaly in solar wind-implanted lithium in lunar

regolith that was exposed at 4 Ga?

6.2 The history of lithium in the solar system

Lithium depletion is an important but contentious issue in stellar evolution studies.

Lithium is the only “metal” produced in the Big Bang in any significant amount, and

it is destroyed by thermonuclear reactions in stars at relatively low temperatures,

with 7Li burning above ∼2.6×106 K, and 6Li burning above ∼2.2×106 K (Jeffries,

2000; Proffitt and Michaud, 1989). However, the solar convective zone does not

reach temperatures high enough to initiate any lithium burning. Therefore standard

solar models have traditionally predicted that the majority of the lithium depletion

occurred during the pre-main-sequence stage in order to account for the currently

measured level of depletion (Piau and Turck-Chièze, 2002; Sestito et al., 2006; Umezu

and Saio, 2000).

Studies of G types stars in young stellar clusters seems to indicate that little,

if any, pre-main-sequence lithium depletion occurs for a ∼1 M⊙ star, which is in

disagreement with the standard solar models. Therefore there must be some other

mechanism responsible for depleting the Sun in lithium (Randich et al., 2001; Jef-

fries, 2000; Pasquini, 2000; Piau et al., 2003). The currently favored hypothesis is

that there is mixing at the boundary between the solar convective and radiative

zones induced by the Sun’s rotation, and lithium in the convective zone is mixed

down to temperatures where it can be destroyed (Deliyannis, 2000; Umezu and Saio,

2000). Therefore, for the analytical model I will develop in this work I’ll assume

that the Sun’s zero age main sequence (ZAMS) lithium abundance is the chondritic

value, and all depletion occurs during main sequence evolution.
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6.2.1 Lithium destruction rates in Sun-like stars

Studies of sun-like stars in the Hyades cluster, with an age of ∼600 My, indicate

that a lithium depletion of about 7Li0/
7Li≈ 3 − 5 occurs in the first 500 My from

ZAMS, with the rest occurring afterwards (Piau et al., 2003). This suggests, based

on current solar and chondritic abundances of lithium, that the Sun had an average

lithium destruction e-folding time of τd = 380±70 My prior to 500 My in age and a

subsequent average e-folding time of τd = 1.1± 0.2 Gy afterwards. In my analytical

model, a range of different e-folding times is considered that reproduce the current

Sun’s lithium abundance.

Since 6Li destruction occurs at a somewhat lower temperature than 7Li destruc-

tion, its depletion rate is much greater. Proffitt and Michaud (1989) proposed a

simple analytical relationship between the abundances of the two isotopes of lithium

and their relative destruction rates:

(

6Li
6Li0

)

=

(

7Li
7Li0

)r

, (6.1)

where r is the ratio of the 6Li destruction time to the 7Li destruction rate. The

nuclear reaction rate is highly temperature dependant, but according to Proffitt

and Michaud, r ≈ 90 is a good estimate for the Sun.

6.2.2 The solar wind composition and time-varying mass flow rate.

It is thought that the solar wind composition is nearly identical to the composition

of the solar convective zone. Therefore the solar wind mass flux of some species n

can be given by:

Ṁn,s = Ṁs · Mfcz,n, (6.2)

where Mfcz,n is the mass fraction of species n in the solar convective zone, and Ṁs

is the solar wind mass flux.

The solar wind mass flux is currently Ṁs ≈ 2 − 3 × 10−14 M⊙ yr−1 Wood

et al. (2005); Sackmann and Boothroyd (2003). Since the Sun is thought to be

a typical G type dwarf star, a mass loss rate history of the Sun could be inferred
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from measuring stellar outflows of other sun-like stars during various stages of main

sequence evolution. Wood et al. (2005) have studied stellar wind fluxes of several

solar-type main sequence stars. By measuring the amount of Lyα absorption in a

star, and fitting the observed absorption feature to a model astrosphere interacting

with its local interstellar medium, the mass loss rate of the star due to stellar winds

can be estimated (Zank, 1999). In order to use this method to determine the rate of

mass loss of a measured star due to its stellar wind, the density and relative velocity

of the local interstellar medium with respect to the star must also be known. Using

the empirical formula of Wood et al. the solar wind mass flux as a function of age,

t, can be estimated to be:

Ṁs = Ṁ⊙

(

t

t⊙

)−2.33±0.55

, t & 400 − 700 My, (6.3)

where Ṁ⊙ = 1.6 ± 0.9 × 1012 g s−1 is the current mass loss rate of the Sun due to

solar wind, and t⊙ = 4.56 Gy is the current age of the Sun (Dearborn, 1991). Prior

to 400 − 700 My the solar wind mass loss is comparable to the current solar wind.

This implies that if the Sun had reached the transition from low to high solar wind

mass loss then the solar wind mass flux could have been 50-600× higher at the time

of LHB than it is currently. However since the transition time is concurrent with

the LHB, both the low and high solar wind mass fluxes will be considered here in

this model.

6.2.3 The solar wind-implanted lunar soil 6Li anomaly

Since lithium, unlike noble gases, is naturally abundant in rocks, measuring a solar

wind component of lithium is difficult. However, recently Chaussidon and Robert

(1999) have measured solar wind-implanted lithium in lunar soils, giving an isotope

ratio of 6Li/7Li= 3.2 ± 0.4 × 10−2, compared to the chondritic ratio of 6Li/7Li=

8.24 ± 0.2 × 10−2. This is in disagreement with standard solar convection models

that predict efficient destruction of the lighter isotope of lithium, which should

leave a photospheric ratio of 6Li/7Li < 10−6 (Chaussidon and Robert, 1999). The

proposed mechanism for the enhancement of 6Li in the solar wind is nucleosynthesis
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in solar flares (Ramaty et al., 2000). In order to account for the current 6Li/7Li ratio

measured from lunar soils by Chaussidon and Robert, the rate of 6Li production in

the solar corona must be 2.4 ± 0.7 g s−1. Since the lithium isotope measurement

was made in lunar soils, which are expected to be overturned on relatively short

timescales due to impact gardening, the measured 6Li/7Li ratio can probably be

assumed to be the current value in the solar wind.

6.3 Estimating the rate of impacts on the Sun

Currently the upper layers of the Sun receive interplanetary material in a number of

ways. The most obvious is due to impacts of asteroids and comets on highly eccentric

orbits. Also, interplanetary dust particles (IDPs) larger than ∼0.5 µm spiral into

the Sun due to the Poynting-Robertson effect. Comets and asteroids with perihelia

very near to the Sun can become “sungrazers,” shedding material that can rapidly

become ionized and carried away as part of the solar wind (Bzowski and Królikowska,

2005). Dust in-fall is likely more important than the flux of large objects impacting

the Sun in enhancing chondritic abundances of lithium in the solar wind because of

the lower density of the solar wind compared with the solar convective envelope.

A simple estimate of the enhancement of solar wind 6Li/7Li can be made taking

into account the sources of chondritic material as well as the mixing and destruction

of lithium in the solar convective envelope. In this model, it is assumed that the

mass flux of chondritic material that impacts the Sun directly, Ṁin, is constant

before, during, and after the LHB. I then divide the solar wind abundances into two

sources corresponding to a source derived from the solar convective zone (Ṁs) and

a source corresponding to the injection of sublimated and ionized dust directly into

the solar wind (Ṁd).

Assuming ∼ 15% of asteroids destabilized during the LHB impact the Sun, this

gives a total deposited mass of 1.3±0.5×10−3 M⊕. I will assume that the cometary

flux is equalt to that of the asteroid flux. The cometary flux will be modeled as

a step-function impact rate profile, that is the comet impact mass flux, Ṁcom,in,
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is simply the total deposited mass divided by the length of time of the epoch of

planetesimal-driven planet migration. From Chapter 5 I showed that this time

period could be no longer thatn 10 My. The asteroidal impact flux will be modeled

using the results of Sim 3 of Chapter 2, as shown in Fig. 2.11.

An estimate of the asteroidal mass flux into the Sun before and after the LHB

can be made by considering the mass loss rate of objects from the Main Asteroid

Belt into the Near Earth Asteroid (NEA) population, assuming ∼ 15% of the NEA

objects ultimately impact the sun. This mass loss rate has been estimated to be

∼ 10−8 M⊕ My−1 (Bottke et al., 2002b). Since the mass of the asteroid belt was

presumably 10 times higher prior to the LHB, the mass loss rate would have been

correspondingly higher at that time.

The impactors in the analytical model developed here have chondritic abun-

dances and isotopic ratios of lithium. There is some uncertainty regarding so-

lar abundances of elements. The chondritic lithium abundance is approximately

170 ± 60 solar (Grevesse and Sauval, 1998; Asplund et al., 2006). The chondritic

lithium isotopic ratio is 6Li/7Li≈ 0.0824 (Chaussidon and Robert, 1998). In the

model, impactors simply add their mass of lithium to the convective zone. The

implanted solar wind lithium isotopic ratio can be given by the following:

(

6Li
7Li

)

imp

=
m̄7Li

m̄6Li

(

Ṁ6Li,s + Ṁ6Li,d

Ṁ7Li,s + Ṁ7Li,d

)

(6.4)

where Ṁn is the mass flux into the solar wind of species n. The dust contribution

of elements is:

Ṁn,d = Ṁd · Mf,Si ·
[n]

[Si]
· m̄n

m̄Si

, (6.5)

where Mf,Si is the mass fraction of silicon in the dust (∼0.15), [n]/[Si] is the measured

chondritic abundances of species n relative to silicon, and m̄n/m̄Si is the ratio of

atomic weights of species n and silicon.

For objects that impact the Sun, the material is mixed into the solar convective

zone in a time comparable to the convective overturn time τc. The convective over-

turn time for the Sun can be estimated using the empirical formula given by Noyes
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et al. (1984):

log(τc) = 1.362 − 0.14x, x < 0, (6.6)

where x = 1 − (B − V ) and τc has units of days. The convective overturn time

is on the order of a few weeks, which is substantially shorter than the timescales

considered for the LHB. Therefore I will assume that objects that impact the Sun

are instantaneously mixed into the convective zone.

The total mass of lithium in the convection zone at any time t beyond some ref-

erence time t0 = 0, results from a balance between lithium addition from meteoritic

in-fall at a rate Ṁin and its destruction with a characteristic time τd. This balance

can be expressed by the following differential equations:

Ṁ7Li,cz = −M7Li,cz

τd

+ Ṁ7Li,in (6.7)

Ṁ6Li,cz = −M6Li,cz

τd/r
+ Ṁ6Li,in (6.8)

Solving these two equations assuming constant meteoritic in-fall rates yields:

M7Li,cz =
(

M7Li,cz(0) − Ṁ7Li,inτd

)

e−t/τd + Ṁ7Li,inτd (6.9)

M6Li,cz =
(

M6Li,cz(0) − Ṁ6Li,inτd/r
)

e−rt/τd + Ṁ6Li,inτd/r (6.10)

The mass fraction of the two lithium isotopes in the Sun is:

Mfcz,7Li =
M7Li,cz

Mcz

(6.11)

Mfcz,6Li =
M6Li,cz

Mcz

(6.12)

The depth of the solar convective zone has been measured using helioseismology

to be RCZ = 0.713±0.001 R⊙ (Basu and Antia, 1997). According to standard solar

models, the convective zone of the Sun contains a mass fraction of the total Sun of

Mcz/ M⊙ = 0.0241 (Bahcall et al., 2005, 2006). This corresponds to a total mass of

the convective zone of Mcz = 4.8 × 1031 g.
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6.4 Dust production rates and the ultimate fate of dust in the solar system

Dust production may have a very important effect on the composition of solar wind

particles. Silicate dust particles that reach inward of ∼20 R⊙ from the Sun begin to

sublimate (Mann et al., 2004). The sublimated atoms can then become ionized due

to charge exchanges with solar wind protons, and subsequently carried away with

the solar wind as pickup ions (PIUs) (Bzowski and Królikowska, 2005). Since at any

given time the solar wind contains much less mass than the solar convective zone,

chondritic material that is directly injected into the solar wind will have a much

stronger effect on the solar wind composition than the same amount of material

impacting the Sun and being diluted in the convection zone.

Another important source of near-solar dust are comets and asteroids with ex-

tremely low perihelia, which are called “sungrazer” comets (Biesecker et al., 2002).

Currently the PIU production rates of sungrazer comets has been estimated to be

∼ 3×104 g s−1, with the majority coming from the Kreutz family of comets (Bzowski

and Królikowska, 2005). This corresponds to ∼1% of the current estimated in-fall

rate of asteroids into the Sun using NEA population replenishment rates given by

Bottke et al. (2002b). Due to the nature of the ν6 secular resonance and 3:1 Jo-

vian mean motion resonance resonance, most asteroids destabilized during the LHB

would attain very high eccentricities before impacting the Sun (Ito and Malhotra,

2006). This could possibly have created a large number of sungrazing asteroids that

produced prodigious amounts of near-solar dust. Collision rates in the asteroid belt

are currently low, but during the LHB dynamical event collision rates could have

been higher, also increasing the amount of interplanetary dust.

Sekanina (2003) estimated the total mass of currently active sungrazing comet

families to be ∼ 1019 g. I’ll make the simple assumption that the rate of PIU

production is directly related to the total size of active sungrazers. Therefore:

ṀPIU

Mobj

≈ 3 × 10−15 s−1 (6.13)

This can be used to estimate the PIU production rate of any active sungrazing comet

or asteroid. This implies that the average PIU production over time is dependent
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on the masses of the active sungrazers, which may vary widely over time depending

on the size distribution of the LHB and NEA asteroid populations.

6.5 Results and Discussion

In the analytical model discussed here there are three sources of uncertainty. The

first is simply the uncertainties arising in measured values taken from the literature,

such as the chondritic and solar abundances of lithium and the total mass flux of

the solar wind. The second source of uncertainty is in assumptions that must be

made in the model. These include:

a) The amount of ionized dust component in the solar wind and the dust pro-

duction rates.

b) The time evolution of the solar wind mass flux.

c) The amount of 6Li (if any) produced in solar flares.

The third, and least constrained, source of uncertainty is in the assumptions in

the impact rate, mass flux, and timescale of objects destabilized during the LHB.

A very simple model of the mass flux of objects into the sun is adopted here in

which contributions due to comets are ignored, the in-fall rate of asteroids follows a

step-function increase followed by a logarthmic decay. The total mass of asteroids

impacting the sun during the LHB is taken to be 2.4× 1025 g, the post-LHB in-fall

rate is taken to be 2 × 106 g s−1, and the pre-LHB in-fall rate is 2 × 107 g s−1 (e.g.

Levison et al., 2001; Bottke et al., 2002, 2005).

Due to these uncertainties, six different scenarios were investigated. The follow-

ing is a summary of the assumptions in each case of the six cases:

• Case 1: The ionized dust component in solar wind has a mass flux equal to

1% of the asteroidal in-fall rate into the sun. This was chosen to match the

current ionized dust mass flow rate from sungrazing comets found by Bzowski

and Królikowska (2005). The solar wind mass flux is equal the current flux.

No solar flare 6Li production is considered.
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• Case 2: The ionized dust component in solar wind has a mass flux equal to

10% of the asteroidal in-fall rate during the LHB, and 1% of the asteroidal

in-fall rate all other times. The solar wind mass flux is equal to the current

flux. No solar flare 6Li production is considered.

• Case 3: The ionized dust component in solar wind has a mass flux equal to

10× the asteroidal in-fall rate. This was chosen so that the current solar wind

6Li/7Li ratio matched the value measured in lunar soils by Chaussidon and

Robert (1999). The solar wind mass flux is equal to the current flux. No solar

flare 6Li production is considered.

• Case 4: The ionized dust component in solar wind has a mass flux equal to

10% of the asteroidal in-fall rate during the LHB, and 1% of the asteroidal

in-fall rate all other times. The solar wind mass flux follows the power law of

Wood et al. (2005) after 400 My (given by Equation 6.3). No solar flare 6Li

production is considered.

• Case 5: Ionized dust component in solar wind has a mass flux equal to 10% of

the asteroidal in-fall rate during the LHB, and 1% of the asteroidal in-fall rate

all other times. The solar wind mass flux is equal to the current flux. The

solar flare 6Li production rate has a constant value of 2.4 ± 0.7 g s−1 into the

solar wind, chosen so that the current solar wind 6Li/7Li ratio matched the

value measured in lunar soils by Chaussidon and Robert (1999).

• Case 6: The ionized dust component in solar wind has a mass flux equal to

10% of the asteroidal in-fall rate during the LHB, and 1% of the asteroidal

in-fall rate all other times. The solar wind mass flux follows the power law of

Wood et al. (2005) after 400 My (given by Equation 6.3). The solar flare 6Li

production rate has a constant value of 24± 7 g s−1 into the solar wind (10×
the value in Case 5).

The 6Li/7Li ratio as a function of time between 100 − 1000 My for each of the six

cases is plotted in Fig 6.1. The vertical width of the lines in each of the figures
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arises due uncertainties in the measured chondritic and photospheric abundances,

uncertainties in the characteristic timescales for lithium depletion, and uncertainties

the mass flux of the solar wind. A summary of results showing the peak 6Li/7Li

ratio during the LHB, as well as the final isotopic ratio after 4.56 Gy is given in

Table 6.1.
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Figure 6.1: Solar wind lithium isotope ratios for six models of early solar system
history

Case 1 is a fairly conservative case. It assumes that the only parameter that

changes over time is the lithium abundance of the sun. There is a peak in the
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Table 6.1: Lithium isotopic ratios during LHB and after 4.56 Gy for each model
case considered.

Case 6Li/7Li — Peak LHB (×10−2) 6Li/7Li — t = 4.56 Gy (×10−2)
1 2.98 ± 1.56 0.0071 ± 0.0018
2 6.59 ± 1.03 0.0071 ± 0.0018
3 8.22 ± 0.2 0.647 ± 0.151
4 0.822 ± 0.818 0.0071 ± 0.0018
5 6.61 ± 1.04 4.51 ± 2.28
6 0.86 ± 0.83 45.1 ± 22.8

lithium isotope ratio due to the LHB, but it may not be measurable. Also, Case 1 is

unable to reproduce the lithium isotope ratio measured in lunar soils at the present

time (see Table 6.1).

In Case 2 the rate of ionized dust as a fraction of the asteroidal in-fall rate is

assumed to be 10× higher during the LHB than either before or after. Since the

dust production due to both collisions and the sublimation of sungrazing asteroids

during the LHB is poorly constrained, this may be a reasonable assumption. This

produces a spike in the lithium isotope ratio during the LHB that is comparable to

ratio measured in lunar soils, so this is quite a promising result. However, without

any other source of enhanced 6Li during the present epoch, this model does not

reproduce measured present solar wind lithium isotope ratio.

Case 3 was constructed to determine if ionized dust alone could account for the

enhanced 6Li measured in lunar soils. It was determined that the ionized dust com-

ponent to the solar wind had to be 10× larger by mass than the total asteroidal

in-fall rate into the sun. This is highly unlikely, otherwise the inner solar system

dust bands would contain an order of magnitude or more mass than the entire Near

Earth Asteroid population, and this is not observed. Nevertheless, the current ma-

jor source of near solar dust may primarily be from the Kreutz family of sungrazing

comets. If a much larger object became a sungrazing “comet,” it could hypotheti-

cally produce a short-lived spike in the dust in-fall rate into the sun, and the lithium

isotope ratio measured in the lunar soils may simply represent a sample from such
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period an enhanced dust-production period. Further work would need to be done

to determine if the lunar soil samples analyzed by Chaussidon and Robert were well

enough separated in exposure time to make such a scenario unlikely.

In Case 4, the promising results of Case 2 were revisited, but this time with an

enhanced solar wind mass flux given by Equation 6.3. These results illustrate how

the ionized dust component is perhaps the most important parameter in this study.

Despite an identical asteroidal in-fall rate, the final solar wind 6Li/7Li is an order of

magnitude lower than when the solar wind mass flux was equal to its modern value,

as in Case 2. The dilution of the ionized dust by the enhanced solar wind may make

detection of the chondritic lithium spike at the LHB difficult.

In Case 5 the creation of 6Li in solar flares was included. If the production rate

of the lighter lithium isotope remained constant throughout time, this produces a

measurable signature in the lithium isotope ratio during the LHB as well as repro-

ducing the measured isotope ratio in modern lunar soils. The assumption that 6Li

production is constant throughout time may not be a good one, however. If the

production rate of the lighter isotope was related to the frequency of solar flares,

a younger more active Sun during the LHB may have produced more 6Li than is

currently seen.

Finally in Case 6 both the 6Li isotope production and solar wind mass flux were

increased. This was an attempt to model a significantly more active Sun during the

LHB. The 6Li production rate was increased by 10× over the current value prior

to a solar age of 1 Gy. There is still a spike in the lithium isotope ratio, but it is

not well separated outside of the uncertainties and it may be below the threshold of

measurability.

6.6 Conclusion

The results above are promising but inconclusive. Better constraints on the inputs

are needed in order to determine whether or not a distinct signature of the LHB is

preserved in the lunar record. If the Sun were significantly more active at the time
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of the LHB, such as in Case 4 and 6, then evidence of the LHB in implanted solar

wind particles may be difficult to detect.

The most important parameter in the analytical model developed here is the

fraction of interplanetary dust that is ionized and injected directly into the solar

wind. This is because the density of the solar wind is much lower than mean density

of the solar convective zone, therefore chondritic material in the form dust that is

converted to solar wind pickup ions has a greater effect on the solar wind lithium

isotope ratio than material that impacts the Sun, despite being much less massive.

Ionized dust alone is unlikely to explain the enhanced 6Li/7Li ratio measured in

lunar soils. A time history of solar wind lithium may be preserved in other lunar

samples, such as breccias that contain soil grains that were exposed to the solar

wind in the past but were later protected.

Future work in this area should include developing a more realistic model of the

in-fall rate of asteroidal and cometary material, including production, sublimation,

and ionization rate of near-solar dust. A better constraint on the solar wind mass

flux and the solar lithium abundance and destruction rate near the time of the LHB

is also desired.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

I have explored the dynamical history of the asteroid belt using dynamical models

of the main asteroid belt. Included here is a short summary of my conclusions,

followed by a brief discussion about implications and possible future areas of study.

I find that the present-day distribution of large asteroids in the main belt is

consistent with the effects of planetesimal-driven giant planet migration. I have

placed constraints on the rate of migration of the giant planets using an analytical

model of the effects of the sweeping ν6 secular resonance on the inner asteroid belt.

The constraint that the migration rate of Saturn must have been > 0.2 AU My−1

is much faster than rates of migration of the giant planets found in the literature.

Reconciling these differences presents a major challenge in our understanding of this

important period of the solar system’s history.

The asteroid belt has experienced a significant amount of depletion due to dy-

namical erosion since the epoch when the current dynamical architecture of the

main asteroid belt and the major planets was established. This dynamical erosion

affects asteroids of all sizes, and is the dominant loss mechanism for asteroids with

D > 30 km in diameter. The best model for describing the loss history as a function

of time is ṅ ∝ t−1, where the proportionality constant undergoes changes at finite

periods of time. The asteroid belt at t = 200 My (where t = 0 is when the asteroid

belt reached its current dynamical state) would have had 28% more large asteroids

than today, and the asteroid belt at t = 10 My would have had 64% more large aster-

oids than today. Extending this model to asteroids with diameters D > 10 km and

using models of the estimated impact probabilities onto the terrestrial planets, I find

that the impact flux of large craters (craters with final diameters Dc > 140–200 km)

is an order of magnitude lower than estimates used in impact crater chronologies

and impact risk assessments.



132

The solar photosphere is currently highly depleted in Li relative to chondrites,

and the 6Li is expected to be far less abundant in the sun than 7Li due to the dif-

ferent nuclear reaction rates of the two isotopes. The addition of meteoroids into

the Sun during the giant planet migration may have driven the solar wind 6Li/7Li

ratio toward chondritic values. In addition, sublimation of asteroids on high ec-

centricity “sungrazing” orbits and the collisions between objects in the inner solar

system may have produced dust, some of which could become ionized and injected

directly into the solar wind as pick-up ions with chondritic lithium isotope abun-

dances. I have attempted to quantify the change to the solar wind 6Li/7Li ratio due

to the estimated in-fall of chondritic material and enhanced dust production during

planetesimal-driven giant planet migration. Evidence for a short-lived impact cata-

clysm that affected the entire inner solar system may be found in the composition

of implanted solar wind particles in lunar regolith, thereby helping determine the

timing and duration of this event. However, much remains to be understood about

the interaction of meteoritic material and the solar atmosphere and my results are

inconclusive. Understanding the production of dust during planet migration (both

due to comminution of planetesimals and solar sublimation) is key to understand-

ing how the solar wind lithium abundance may have changed due to the in-fall of

chondritic material.

7.1 Further exploration of the effects of planet migration on the main asteroid belt

In Chapter 3 I demonstrated that the observed distribution of large asteroids (where

absolute visual magnitude is used as a proxy for size) is consistent with the effects

of planetesimal-driven giant planet migration. However, there are a number of ways

in which my model could be improved. I performed my planet migration simu-

lation on a model asteroid belt that had already experienced 4 Gy of dynamical

evolution. An obvious improvement would be to put the models into the “correct”

order, that is do the planet migration simulation first, followed by the 4 Gy long

dynamical erosion simulation described in Chapter 2. Paradoxically however, per-
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forming the simulations in the correct order would introduce new complications.

As I demonstrated in Chapter 5, the eccentricity distribution of the asteroid belt

after planet migration is a function of both the rate of migration of the planets and

the pre-migration eccentricity distribution. It is unclear whether the present-day

distribution of asteroid eccentricities (see Fig. 5.5a) contains enough information to

determine the pre-migration distribution. A constraint on the pre-migration state

of the asteroid belt may need to come from studies of the primordial excitation of

the asteroid belt, such as in O’Brien et al. (2007).

A better model of the effects of planet migration would also ideally contain

roughly 10–20 times as many particles as were used in the Chapter 3 model asteroid

belt. This requirement motivated the development of Sim 2 described in Chapter 2,

however that simulation was very computationally expensive, and required several

months of computing time in order to complete ∼ 1 Gy of integration time. Perform-

ing the simulations in the correct order would help, as most of the initial number of

asteroids should be lost after the initial phase of planet migration. Another advan-

tage of doing the simulations in the correct order would be an investigation into the

capture of the Hilda population in the 3:2 jovian mean motion resonance, similar to

the study done by Franklin et al. (2004).

I have also neglected the important pre-migration history of the main asteroid

belt. If, as some evidence suggests, sweeping resonances in the asteroid belt due

to giant planet migration is the cause of the LHB at 3.9 Gy ago (e.g. Strom et al.,

2005), then the asteroid belt experienced ∼ 700 My of collisional and dynamical

evolution before planet migration began. Such a long stretch of time should have

been enough to sculpt “primordial Kirkwood gaps” at the earlier locations of jovian

mean motion resonances. Especially important is the location of the ν6 resonance

at this early times. As I demonstrated in Chapter 3, the distribution of the large

asteroids in the main belt is consistent with the effects of resonance sweeping due to

planet migration, but there do not appear to be regions of excess depletion due to

long-lived resonances anywhere in the main belt. There are several possible solutions

to this dilemma. One is that the pre-migration eccentricities of the giant planets was
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much lower. This is consistent with the Nice model, which proposes that the current

eccentricities (and inclinations) of the giant planets were produced during the violent

instability arising from the crossing of the Jupiter-Saturn 2:1 resonance (Tsiganis

et al., 2005). In this model, the giant planets had more circular orbits in the 700 My

period before the resonance crossing initiated rapid planet migration. The strength

of the ν6 resonance is related to the power of the g6 mode in the giant planets,

which is related to the eccentricity of the giant planets. As Eqs. (5.31) and (5.3)

illustrate, the strength of the resonance (given by the coefficient σ) is proportional

to the square of the power of the g6 mode in the planets. Therefore, the ability

of the ν6 resonance in clearing asteroids is very sensitive on the eccentricity of the

giant planets. Alternatively, outer solar system planetesimals that were destabilized

by planet migration and then captured by sweeping jovian mean motion resonances

could potentially have filled up any ancient gaps (Levison et al., 2009).

Another possibility is that the epoch of planet migration occurred very soon after

the planets formed, and that the LHB was caused by some other agent, such as a

quasi-stable planetary embryo in the “Planet V” hypothesis (Chambers, 2007). This

is difficult to reconcile with various pieces of evidence that link the LHB to the main

asteroid belt. Evidence in the size distribution of cratered landscapes of the Moon,

Mercury, and Mars that are associated with the LHB show the signature of main belt

asteroids, implying some type of size-independent (i.e. dynamical) perturbation on

the main asteroid belt (Strom et al., 2005). In addition geochemical evidence points

to an asteroidal source for lunar impactors during the LHB (Kring and Cohen, 2002).

As discussed in Chapter 3, the distribution of asteroids in the main belt is consistent

with the effects of giant planet migration. At least ∼ 1021 g of material is required

to have impacted the Moon during the LHB, based on the observed abundance of

ancient lunar craters (Chyba, 1990). Based on the impact probabilities calculated

in Chapter 2 and the mass of the present-day asteroid belt, the LHB requires a

minimum of ∼ 2 times the present-day mass of the asteroid belt to have been in

terrestrial planet-crossing orbits. Any perturbation to the asteroid belt large enough

to produce the LHB should have left its mark on the structure of the main asteroid
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belt. If planet migration occurred long before the LHB, then an either an additional

perturbation on the asteroid belt that somehow preserved the earlier signature of

planet migration in the distribution of asteroids occurred, or some other reservoir

of small bodies that happened to have an identical size distribution as the main

asteroid belt (and similar geochemistry) had to have been destabilized.

7.2 Secular theory for a migrating planetary system

In Chapter 4 I calculated the secular dynamics of the solar system during planet

migration. A first order Laplace-Lagrange secular theory with corrections for the

near 2:1 Jupiter-Saturn mean motion resonance, similar to that derived by Malhotra

et al. (1989) for the uranian satellite system, is adequate to describe the behavior of

the secular frequencies over a large range in Saturn’s semimajor axis. The exception

to this is in the current solar system, where the effects of the near 5:2 resonance,

the “Great Inequality,” increase the secular frequencies by a substantial amount and

introduce additional frequencies. When Jupiter and Saturn are within a resonance,

such as the 5:2, 7:3, 2:1, and others, the e-̟ secular frequencies broaden and the

power spectra become noisy. In such cases it can be difficult to identify the equivalent

g5 and g6 frequencies, and, especially near the 2:1 resonance, the g5 mode dominates

over the g6 in Saturn’s e-̟ time history. The strength of the ν6 resonance is related

to the power of the g6 mode in the planets’ secular evolution, and in power spectra

analysis the power of a mode is proportional to the amplitude of the peak at that

mode. Therefore, if Saturn and Jupiter were once closer to the 2:1 resonance than

today the ν6 may not have been as powerful as today. A better understanding of

the secular dynamics near Jupiter-Saturn mean motion resonances may help refine

models of planet migration and better understand the effects of secular resonance

sweeping on the asteroid belt. In addition, I have ignored the important coupling

between asteroid eccentricities and inclinations during the calculation of the position

of the ν6 resonance. The inclination dependence of the ν6 resonance location is well

known for the current solar system, but not for the solar system with the giant
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planets undergoing migration.

7.3 Improving the terrestrial planet impact flux calculation

In Chapter 2 I estimated the rate of D > 10 km asteroid impacts onto the Earth

and Moon using my dynamical model of the asteroid belt. I found that my estimate

was lower by roughly an order of magnitude than to estimates in the literature

of the production rate of Dc > 140–200 km craters. However, my model did not

incorporate collisional evolution or non-gravitational effects. An asteroid belt model

containing both dynamical evolution as well as collisional evolution over 4 Gy of solar

system history, and incorporating the effects of non-gravitational forces such as the

Yarkovsky effect, could provide deeper insights into the history of the asteroid belt

and its contribution to the collisional history of the terrestrial planets. Whether or

not additional model parameters can account for a factor of ∼ 10 discrepancy in the

number of D > 10 km asteroid impacts is uncertain. However, the result that the

large (D & 30 km) asteroid population has significantly eroded over the age of the

solar system is robust.

Because the large asteroid population is the reservoir from where collisional

fragments that become NEAs are derived, then if the reservoir has eroded then

the rate of production of small fragments should have declined as well. This may

provide an explanation for the result of Quantin et al. (2007) that suggest that

the production of Dc > 1 km craters has declined by a factor of three over the

past ∼ 3 Gy. This hypothesis has not been explored in this work, and a more

complete model of the asteroid belt incorporating dynamical, collisional, and non-

gravitational effects would be needed to definitively test it. This hypothesis also

needs not contradict the evidence that the impact flux in the terrestrial planet

region has increased by a factor of ∼ 2–3 in the past ∼ 500 My (Marchi et al., 2009).

The impact cratering rate on the terrestrial planets may have undergone significant

fluctuations on top of a long-term decline, due to breakup events in the asteroid

belt (e.g., Korochantseva et al., 2007; Zellner et al., 2009; Bottke et al., 2007b).
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Better models of the asteroid belt could help refine impact crater chronologies for

the inner solar system.

7.4 Meteoritic pollution of the Sun and other stars

In Chapter 6 I explored the effect of in-falling meteoritic material in the solar atmo-

sphere, specifically looking at the element lithium and its isotopes. Extending this

study to include observations of young sun-like stars could help determine whether

or not planetesimal-driven planet migration is a common feature of the early evolu-

tion of planetary systems. Many sun-like stars appear to have observable transient

warm dust disks that could be analogues to the dust produced by scattered plan-

etesimals during our solar system’s planet migration (Wyatt et al., 2007). If planet

migration is a common feature of planetary systems, then the signature of mete-

oritic infall may be observable in the lithium abundances of stellar atmospheres

where planetesimal-driven migration is occurring.

7.5 Parting thoughts

The epoch of planetesimal-driven giant planet migration was a unique period when

events far out in the distant realm of Pluto shaped the history of every planet from

massive Jupiter down to tiny Mercury. The tentative links between this period of

time and the Late Heavy Bombardment that left its scars in the cratered landscapes

of the planets and satellites hint at a profound moment of violence in the early

history of Earth. There is much yet to be learned about this fascinating period of

our solar system’s history. I end this work with a bit of whimsical speculative poetry

inspired by this event.

Bartholomew Lombardment and the Late Heavy Bombardment

A long time ago, four billion years give or take

Lived a microbe named Floyd in a cozy little lake
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On a nice sunny day Floyd was highly annoyed

When his home was destroyed by a big asteroid

He shlorped and he flooped and got quite red in the face

As his single-celled body was flung deep into space

“What is this? What is happening!?” he cried out with fear

But no one could answer, there was nobody near!

One day there arrived a man in a hat

He pulled out a briefcase and gave Floyd a small pat

“I’m a lawyer! My name is Bartholomew Lombardment

And I represent the Late Heavy Bombardment”

“A lawyer!? A lawyer!?” cried Floyd, quite perturbed.

“I don’t need a lawyer!

I need a house with a fireplace and foyer!

I’ve been kicked to the stars!

I’ve been sent way too fars!

I want to go back to my lake down on Mars!”

“There’s no need to fret, there’s no need to fear”

Said Bart as he showed him a chart that was near.

“It’s called the Late Heavy Bombardment, you see,

I’ll explain it all to you,” he said with much glee.

“Jupiter and Saturn are restless, their orbits are changing

With a cold disk of iceballs, their momentum’s exchanging

Now the asteroids can’t all remain where they are

Perturbations from Jupiter will fling them afar.

They’ll crash down on Mercury
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They’ll crash down with fury!

They’ll crash down on Mars

Like big shooting stars!

They’ll crash down on Venus, the Earth, and the Moon,

But don’t worry so much it will all end quite soon!”

A hundred million years went by

Of rocks falling from the sky

When Floyd finally landed, his heart filled with mirth

While he made his new home right down here on the Earth.
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APPENDIX A

DETERMINING THE OPTIMAL HISTOGRAM BIN SIZE

When presenting data as a histogram, the problem of what bin size to choose arises.

In the literature, the choice of bin size is often ad hoc, but need not be so. In

the case of the asteroid belt, I wish to analyze the semimajor axis distribution of

asteroids in order to gain insight into its past dynamical history. If I choose a

bin size that is too small, stochastic variation between bins can mask important

underlying variations in the orbital element distributions. If I choose a bin size that

is too large, important small-scale variations become lost (i.e. the variability near

narrow Kirkwood gaps). In this work, I use histogram bin size optimizer developed

by Shimazaki and Shinomoto (2007) for optimizing time-series data with variability

that obeys Poisson statistics. This method is intuitive and easy to implement,

and can be generalized to the problem of the number distribution of asteroids as a

function of semimajor axis.

The optimal bin size is found by minimizing a cost function defined as:

C(∆) =
2k − ν

∆2
, (A.1)

where the data have been divided into N bins of size ∆, k is the mean of the number

of asteroids per unit bin, and ν is the variance. The mean is

k =
1

N

N
∑

i

ki, (A.2)

and the variance is

ν =
1

N

N
∑

i

(ki − k)2. (A.3)

The method works by assuming that the number of occurrences (or in my case,

the number of asteroids), k, in each bin obeys a Poisson distribution such that the
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Figure A.1: The cost function of Eq. (A.1) as a function of the bin size ∆ applied
to the set of 931 asteroids with H ≤ 10.8 excluding collisional family members. The
minimum is nearly flat in the range of 0.01–0.02 AU, so the choice of 0.015 AU is a
reasonable one.

variance of k is equal to the mean. Fig. A.1 shows the C(∆) for distribution in

proper semimajor axis of my reduced set of H ≤ 10.8 asteroids described in §2.3.

The optimal bin size is ∼ 0.015 AU for this data set. The results are similar for the

surviving particles of Sim 1.
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APPENDIX B

FITTING THE ECCENTRICITY AND INCLINATION DISTRIBUTIONS

The binned eccentricity distribution may be modeled as Gaussian probability dis-

tribution funciton, given by:

p(e) =
1

σ
√

2π
exp

[

−(e − µ)2

2σ2

]

, (B.1)

where σ is the standard deviation and µ is the mean. With an appropriate scaling

factor, Eq. (B.1) can be used to model the number of asteroids per eccentricity bin.

However, rather than fit the binned distributions directly, I instead perform a least

squares fit of the unbinned sample to the Gaussian cumulative distribution function

given by:

P (x) =
1

2
+

1

2
erf

(

−x − µ

σ
√

2

)

. (B.2)

The observational sample that I used is that described in Chapter 2, §2.3.1. This

sample is the set of proper elements of asteroids with H < 10.8 that have not been

identified to be members of collisional families. For the eccentricity distribution the

best fit parameters are:

µe = 0.135 ± 0.00013,

σe = 0.0716 ± 0.00022.

A better fit to the eccentricity distribution can be obtained using a double-

peaked, symmetric, gaussian distribution, where:

p′(x) =
A′

σ′
√

2π

{

exp

[

−(x − µ′
1)

2

2σ′2

]

+ exp

[

−(x − µ′
2)

2

2σ′2

]}

. (B.3)

The cumulative distribution function for Eq. (B.3) is

P ′(x) =
1

2
+

1

4

[

erf

(

−x − µ′
1

σ
√

2

)

+ erf

(

−x − µ′
2

σ
√

2

)]

. (B.4)
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I performed a least squares fit of eccentricity distribution to Eq. (B.4) and obtain

the following best-fit parameters:

µ′
e,1 = 0.0846 ± 0.00011,

µ′
e,2 = 0.185 ± 0.00012.

σ′
e = 0.0411 ± 0.00020,

I evaluated the goodness of fit using the Kolmogorov-Smirnov (K-S) test. The

K-S test determines the probability that two distributions are the same, or in my

case how well my model distributions fit the observed data (Press et al., 1992). The

K-S test compares the cumulative distribution of the data against the model cumu-

lative distribution function. In the case of the eccentricity distribution, observed

asteroid data has a probability of 4.5 × 10−2 that it comes from the best fit Gaus-

sian distribution given by Eq. (B.2), but a probability of 0.73 that it comes from

the double-peaked Gaussian given by Eq. (B.4).
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D., Levison, H.F. 2005. Linking the collisional history of the main asteroid belt
to its dynamical excitation and depletion. Icarus 179, 63–94.

Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.M., Levison, H.F., Michel, P.,
Metcalfe, T.S. 2002. Debiased Orbital and Absolute Magnitude Distribution of
the Near-Earth Objects. Icarus 156, 399–433.

Bottke, W.F., Nolan, M.C., Greenberg, R., Kolvoord, R.A. 1994. Collisional life-
times and impact statistics of near-earth asteroids. Hazards Due to Comets and
Asteroids , 337.
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D., Levison, H. 2005a. The fossilized size distribution of the main asteroid belt.
Icarus 175, 111.



145
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